Cargando…
Discovering cell types using manifold learning and enhanced visualization of single-cell RNA-Seq data
Identifying relevant disease modules such as target cell types is a significant step for studying diseases. High-throughput single-cell RNA-Seq (scRNA-seq) technologies have advanced in recent years, enabling researchers to investigate cells individually and understand their biological mechanisms. C...
Autores principales: | Vasighizaker, Akram, Danda, Saiteja, Rueda, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742092/ https://www.ncbi.nlm.nih.gov/pubmed/34996927 http://dx.doi.org/10.1038/s41598-021-03613-0 |
Ejemplares similares
-
Cell Type Annotation Model Selection: General-Purpose vs. Pattern-Aware Feature Gene Selection in Single-Cell RNA-Seq Data †
por: Vasighizaker, Akram, et al.
Publicado: (2023) -
A robust nonlinear low-dimensional manifold for single cell RNA-seq data
por: Verma, Archit, et al.
Publicado: (2020) -
Structure-preserving visualization for single-cell RNA-Seq profiles using deep manifold transformation with batch-correction
por: Xu, Yongjie, et al.
Publicado: (2023) -
Discovering conservation laws using optimal transport and manifold learning
por: Lu, Peter Y., et al.
Publicado: (2023) -
Self-assembling manifolds in single-cell RNA sequencing data
por: Tarashansky, Alexander J, et al.
Publicado: (2019)