Cargando…
A Fine-Tuned BERT-Based Transfer Learning Approach for Text Classification
Text Classification problem has been thoroughly studied in information retrieval problems and data mining tasks. It is beneficial in multiple tasks including medical diagnose health and care department, targeted marketing, entertainment industry, and group filtering processes. A recent innovation in...
Autores principales: | Qasim, Rukhma, Bangyal, Waqas Haider, Alqarni, Mohammed A., Ali Almazroi, Abdulwahab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742153/ https://www.ncbi.nlm.nih.gov/pubmed/35013691 http://dx.doi.org/10.1155/2022/3498123 |
Ejemplares similares
-
Effectiveness of Fine-tuned BERT Model in Classification of Helpful and Unhelpful Online Customer Reviews
por: Bilal, Muhammad, et al.
Publicado: (2022) -
Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches
por: Bangyal, Waqas Haider, et al.
Publicado: (2021) -
Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning
por: Prottasha, Nusrat Jahan, et al.
Publicado: (2022) -
VGCN-BERT: Augmenting BERT with Graph Embedding for Text Classification
por: Lu, Zhibin, et al.
Publicado: (2020) -
Towards Transfer Learning Techniques—BERT, DistilBERT, BERTimbau, and DistilBERTimbau for Automatic Text Classification from Different Languages: A Case Study
por: Silva Barbon, Rafael, et al.
Publicado: (2022)