Cargando…
Deep learning model improves radiologists’ performance in detection and classification of breast lesions
OBJECTIVE: Computer-aided diagnosis using deep learning algorithms has been initially applied in the field of mammography, but there is no large-scale clinical application. METHODS: This study proposed to develop and verify an artificial intelligence model based on mammography. Firstly, mammograms r...
Autores principales: | Sun, Yingshi, Qu, Yuhong, Wang, Dong, Li, Yi, Ye, Lin, Du, Jingbo, Xu, Bing, Li, Baoqing, Li, Xiaoting, Zhang, Kexin, Shi, Yanjie, Sun, Ruijia, Wang, Yichuan, Long, Rong, Chen, Dengbo, Li, Haijiao, Wang, Liwei, Cao, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742176/ https://www.ncbi.nlm.nih.gov/pubmed/35125812 http://dx.doi.org/10.21147/j.issn.1000-9604.2021.06.05 |
Ejemplares similares
-
Prediction of pathological nodal stage of locally advanced rectal cancer by collective features of multiple lymph nodes in magnetic resonance images before and after neoadjuvant chemoradiotherapy
por: Zhu, Haitao, et al.
Publicado: (2019) -
Better prognostic determination of cT3 rectal cancer through measurement of distance to mesorectal fascia: A multicenter study
por: Zhang, Xiaoyan, et al.
Publicado: (2021) -
Beyond radiologist-level liver lesion detection on multi-phase contrast-enhanced CT images by deep learning
por: Wu, Lei, et al.
Publicado: (2023) -
Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2022) -
What can European radiologists learn from the outbreak of COVID-19 in China? A discussion with a radiologist from Wuhan
por: Gutzeit, Andreas, et al.
Publicado: (2020)