Cargando…
SMAD4 contributes to chondrocyte and osteocyte development
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called ‘SMAD4’) have been discussed in different cancers and stem cell‐related studies, there are a few reviews summarizing the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742202/ https://www.ncbi.nlm.nih.gov/pubmed/34841647 http://dx.doi.org/10.1111/jcmm.17080 |
_version_ | 1784629667955736576 |
---|---|
author | Pakravan, Katayoon Razmara, Ehsan Mahmud Hussen, Bashdar Sattarikia, Fatemeh Sadeghizadeh, Majid Babashah, Sadegh |
author_facet | Pakravan, Katayoon Razmara, Ehsan Mahmud Hussen, Bashdar Sattarikia, Fatemeh Sadeghizadeh, Majid Babashah, Sadegh |
author_sort | Pakravan, Katayoon |
collection | PubMed |
description | Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called ‘SMAD4’) have been discussed in different cancers and stem cell‐related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors—ie DNA methylation, histone modifications and noncoding RNAs—make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype‐phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals. |
format | Online Article Text |
id | pubmed-8742202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87422022022-01-12 SMAD4 contributes to chondrocyte and osteocyte development Pakravan, Katayoon Razmara, Ehsan Mahmud Hussen, Bashdar Sattarikia, Fatemeh Sadeghizadeh, Majid Babashah, Sadegh J Cell Mol Med Reviews Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called ‘SMAD4’) have been discussed in different cancers and stem cell‐related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors—ie DNA methylation, histone modifications and noncoding RNAs—make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype‐phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals. John Wiley and Sons Inc. 2021-11-28 2022-01 /pmc/articles/PMC8742202/ /pubmed/34841647 http://dx.doi.org/10.1111/jcmm.17080 Text en © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reviews Pakravan, Katayoon Razmara, Ehsan Mahmud Hussen, Bashdar Sattarikia, Fatemeh Sadeghizadeh, Majid Babashah, Sadegh SMAD4 contributes to chondrocyte and osteocyte development |
title | SMAD4 contributes to chondrocyte and osteocyte development |
title_full | SMAD4 contributes to chondrocyte and osteocyte development |
title_fullStr | SMAD4 contributes to chondrocyte and osteocyte development |
title_full_unstemmed | SMAD4 contributes to chondrocyte and osteocyte development |
title_short | SMAD4 contributes to chondrocyte and osteocyte development |
title_sort | smad4 contributes to chondrocyte and osteocyte development |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742202/ https://www.ncbi.nlm.nih.gov/pubmed/34841647 http://dx.doi.org/10.1111/jcmm.17080 |
work_keys_str_mv | AT pakravankatayoon smad4contributestochondrocyteandosteocytedevelopment AT razmaraehsan smad4contributestochondrocyteandosteocytedevelopment AT mahmudhussenbashdar smad4contributestochondrocyteandosteocytedevelopment AT sattarikiafatemeh smad4contributestochondrocyteandosteocytedevelopment AT sadeghizadehmajid smad4contributestochondrocyteandosteocytedevelopment AT babashahsadegh smad4contributestochondrocyteandosteocytedevelopment |