Cargando…
Extreme Rare Events Identification Through Jaynes Inferential Approach
The identification of extreme rare events is a challenge that appears in several real-world contexts, from screening for solo perpetrators to the prediction of failures in industrial production. In this article, we explain the challenge and present a new methodology for addressing it, a methodology...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742250/ https://www.ncbi.nlm.nih.gov/pubmed/34647811 http://dx.doi.org/10.1089/big.2021.0191 |
Sumario: | The identification of extreme rare events is a challenge that appears in several real-world contexts, from screening for solo perpetrators to the prediction of failures in industrial production. In this article, we explain the challenge and present a new methodology for addressing it, a methodology that may be considered in terms of features engineering. This methodology, which is based on Jaynes inferential approach, is tested on a dataset dealing with failures in production in the pulp-and-paper industry. The results are discussed in the context of the benefits of using the approach for features engineering in practical contexts involving measurable risks. |
---|