Cargando…
Machine Learning-Based Prognostic Prediction Models of Non-Metastatic Colon Cancer: Analyses Based on Surveillance, Epidemiology and End Results Database and a Chinese Cohort
PURPOSE: The present study aimed to develop prognostic prediction models based on machine learning (ML) for non-metastatic colon cancer (CRC), which can provide a precise quantitative risk assessment and serve as an assistive method for treatment strategy development. The possibility of improving pr...
Autores principales: | Tang, Mo, Gao, Lihao, He, Bin, Yang, Yufei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742582/ https://www.ncbi.nlm.nih.gov/pubmed/35018119 http://dx.doi.org/10.2147/CMAR.S340739 |
Ejemplares similares
-
Analysis of prognostic factors of metastatic endometrial cancer based on surveillance, epidemiology, and end results database
por: Zhang, Meng, et al.
Publicado: (2023) -
Machine learning based prognostic model of Chinese medicine affecting the recurrence and metastasis of I-III stage colorectal cancer: A retrospective study in China
por: Tang, Mo, et al.
Publicado: (2022) -
Treatment method and prognostic factors of chondrosarcoma: based on Surveillance, Epidemiology, and End Results (SEER) database
por: Hua, Kun-Chi, et al.
Publicado: (2020) -
Prognostic Factors in Patients With Osteosarcoma With the Surveillance, Epidemiology, and End Results Database
por: Fu, Peng, et al.
Publicado: (2020) -
Prognostic factors of patients after liver cancer surgery: Based on Surveillance, Epidemiology, and End Results database
por: Liang, Fangfang, et al.
Publicado: (2021)