Cargando…
COVID-19 and cyberbullying: deep ensemble model to identify cyberbullying from code-switched languages during the pandemic
It has been declared by the World Health Organization (WHO) the novel coronavirus a global pandemic due to an exponential spread in COVID-19 in the past months reaching over 100 million cases and resulting in approximately 3 million deaths worldwide. Amid this pandemic, identification of cyberbullyi...
Autores principales: | Paul, Sayanta, Saha, Sriparna, Singh, Jyoti Prakash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742666/ https://www.ncbi.nlm.nih.gov/pubmed/35035263 http://dx.doi.org/10.1007/s11042-021-11601-9 |
Ejemplares similares
-
Enhanced sentiment extraction architecture for social media content analysis using capsule networks
por: Demotte, P., et al.
Publicado: (2021) -
FastSS: Fast and smooth segmentation of JPEG compressed printed text documents using DC and AC signal analysis
por: Rajesh, Bulla, et al.
Publicado: (2022) -
Predicting the impact of online news articles – is information necessary?: Application to COVID-19 articles
por: Preiss, Judita
Publicado: (2022) -
Multi-source domain adaptation of social media data for disaster management
por: Khattar, Anuradha, et al.
Publicado: (2022) -
Net activism and whistleblowing on YouTube: a text mining analysis
por: Turenne, Nicolas
Publicado: (2022)