Cargando…
An active learning approach for clustering single-cell RNA-seq data
Single-cell RNA sequencing (scRNA-seq) data has been widely used to profile cellular heterogeneities with a high-resolution picture. Clustering analysis is a crucial step of scRNA-seq data analysis because it provides a chance to identify and uncover the undiscovered cell types. Most methods for clu...
Autores principales: | Lin, Xiang, Liu, Haoran, Wei, Zhi, Roy, Senjuti Basu, Gao, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742847/ https://www.ncbi.nlm.nih.gov/pubmed/34244616 http://dx.doi.org/10.1038/s41374-021-00639-w |
Ejemplares similares
-
Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
por: Tian, Tian, et al.
Publicado: (2021) -
SAIC: an iterative clustering approach for analysis of single cell RNA-seq data
por: Yang, Lu, et al.
Publicado: (2017) -
Deep single-cell RNA-seq data clustering with graph prototypical contrastive learning
por: Lee, Junseok, et al.
Publicado: (2023) -
Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data
por: Wei, Nana, et al.
Publicado: (2022) -
A model-based constrained deep learning clustering approach for spatially resolved single-cell data
por: Lin, Xiang, et al.
Publicado: (2022)