Cargando…
Lysosome Function in Cardiovascular Diseases
The lysosome is a single ubiquitous membrane-enclosed intracellular organelle with an acidic pH present in all eukaryotic cells, which contains large numbers of hydrolytic enzymes with their maximal enzymatic activity at a low pH (pH ≤ 5) such as proteases, nucleases, and phosphatases that are able...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743031/ https://www.ncbi.nlm.nih.gov/pubmed/34019755 http://dx.doi.org/10.33594/000000373 |
_version_ | 1784629823190073344 |
---|---|
author | Bhat, Owais M. Li, Pin-Lan |
author_facet | Bhat, Owais M. Li, Pin-Lan |
author_sort | Bhat, Owais M. |
collection | PubMed |
description | The lysosome is a single ubiquitous membrane-enclosed intracellular organelle with an acidic pH present in all eukaryotic cells, which contains large numbers of hydrolytic enzymes with their maximal enzymatic activity at a low pH (pH ≤ 5) such as proteases, nucleases, and phosphatases that are able to degrade extracellular and intracellular components. It is well known that lysosomes act as a center for degradation and recycling of large numbers of macromolecules delivered by endocytosis, phagocytosis, and autophagy. Lysosomes are recognized as key organelles for cellular clearance and are involved in many cellular processes and maintain cellular homeostasis. Recently, it has been shown that lysosome function and its related pathways are of particular importance in vascular regulation and related diseases. In this review, we highlighted studies that have improved our understanding of the connection between lysosome function and vascular physiological and pathophysiological activities in arterial smooth muscle cells (SMCs) and endothelial cells (ECs). Sphingolipids-metabolizing-enzymes in lysosomes play critical roles in intracellular signaling events that influence cellular behavior and function in SMCs and ECs. The focus of this review will be to define the mechanism by which the lysosome contributes to cardiovascular regulation and diseases. It is believed that exploring the role of lysosomal function and its sphingolipid metabolism in the initiation and progression of vascular disease and regulation may provide novel insights into the understanding of vascular pathobiology and helps develop more effective therapeutic strategies for vascular diseases. |
format | Online Article Text |
id | pubmed-8743031 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-87430312022-01-09 Lysosome Function in Cardiovascular Diseases Bhat, Owais M. Li, Pin-Lan Cell Physiol Biochem Article The lysosome is a single ubiquitous membrane-enclosed intracellular organelle with an acidic pH present in all eukaryotic cells, which contains large numbers of hydrolytic enzymes with their maximal enzymatic activity at a low pH (pH ≤ 5) such as proteases, nucleases, and phosphatases that are able to degrade extracellular and intracellular components. It is well known that lysosomes act as a center for degradation and recycling of large numbers of macromolecules delivered by endocytosis, phagocytosis, and autophagy. Lysosomes are recognized as key organelles for cellular clearance and are involved in many cellular processes and maintain cellular homeostasis. Recently, it has been shown that lysosome function and its related pathways are of particular importance in vascular regulation and related diseases. In this review, we highlighted studies that have improved our understanding of the connection between lysosome function and vascular physiological and pathophysiological activities in arterial smooth muscle cells (SMCs) and endothelial cells (ECs). Sphingolipids-metabolizing-enzymes in lysosomes play critical roles in intracellular signaling events that influence cellular behavior and function in SMCs and ECs. The focus of this review will be to define the mechanism by which the lysosome contributes to cardiovascular regulation and diseases. It is believed that exploring the role of lysosomal function and its sphingolipid metabolism in the initiation and progression of vascular disease and regulation may provide novel insights into the understanding of vascular pathobiology and helps develop more effective therapeutic strategies for vascular diseases. 2021-05-22 /pmc/articles/PMC8743031/ /pubmed/34019755 http://dx.doi.org/10.33594/000000373 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. |
spellingShingle | Article Bhat, Owais M. Li, Pin-Lan Lysosome Function in Cardiovascular Diseases |
title | Lysosome Function in Cardiovascular Diseases |
title_full | Lysosome Function in Cardiovascular Diseases |
title_fullStr | Lysosome Function in Cardiovascular Diseases |
title_full_unstemmed | Lysosome Function in Cardiovascular Diseases |
title_short | Lysosome Function in Cardiovascular Diseases |
title_sort | lysosome function in cardiovascular diseases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743031/ https://www.ncbi.nlm.nih.gov/pubmed/34019755 http://dx.doi.org/10.33594/000000373 |
work_keys_str_mv | AT bhatowaism lysosomefunctionincardiovasculardiseases AT lipinlan lysosomefunctionincardiovasculardiseases |