Cargando…
External Mechanical Work in Runners With Unilateral Transfemoral Amputation
Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743270/ https://www.ncbi.nlm.nih.gov/pubmed/35024365 http://dx.doi.org/10.3389/fbioe.2021.793651 |
_version_ | 1784629873612947456 |
---|---|
author | Murata, Hiroto Hisano, Genki Ichimura, Daisuke Takemura, Hiroshi Hobara, Hiroaki |
author_facet | Murata, Hiroto Hisano, Genki Ichimura, Daisuke Takemura, Hiroshi Hobara, Hiroaki |
author_sort | Murata, Hiroto |
collection | PubMed |
description | Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like “bouncing step” using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb’s step and decelerated in the unaffected limb’s step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running. |
format | Online Article Text |
id | pubmed-8743270 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87432702022-01-11 External Mechanical Work in Runners With Unilateral Transfemoral Amputation Murata, Hiroto Hisano, Genki Ichimura, Daisuke Takemura, Hiroshi Hobara, Hiroaki Front Bioeng Biotechnol Bioengineering and Biotechnology Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like “bouncing step” using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb’s step and decelerated in the unaffected limb’s step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running. Frontiers Media S.A. 2021-12-27 /pmc/articles/PMC8743270/ /pubmed/35024365 http://dx.doi.org/10.3389/fbioe.2021.793651 Text en Copyright © 2021 Murata, Hisano, Ichimura, Takemura and Hobara. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Murata, Hiroto Hisano, Genki Ichimura, Daisuke Takemura, Hiroshi Hobara, Hiroaki External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_full | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_fullStr | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_full_unstemmed | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_short | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_sort | external mechanical work in runners with unilateral transfemoral amputation |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743270/ https://www.ncbi.nlm.nih.gov/pubmed/35024365 http://dx.doi.org/10.3389/fbioe.2021.793651 |
work_keys_str_mv | AT muratahiroto externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT hisanogenki externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT ichimuradaisuke externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT takemurahiroshi externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT hobarahiroaki externalmechanicalworkinrunnerswithunilateraltransfemoralamputation |