Cargando…

Applications of artificial intelligence in the thorax: a narrative review focusing on thoracic radiology

OBJECTIVE: This review will focus on how AI—and, specifically, deep learning—can be applied to complement aspects of the current healthcare system. We describe how AI-based tools can augment existing clinical workflows by discussing the applications of AI to worklist prioritization and patient triag...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yisak, Park, Ji Yoon, Hwang, Eui Jin, Lee, Sang Min, Park, Chang Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743417/
https://www.ncbi.nlm.nih.gov/pubmed/35070379
http://dx.doi.org/10.21037/jtd-21-1342
Descripción
Sumario:OBJECTIVE: This review will focus on how AI—and, specifically, deep learning—can be applied to complement aspects of the current healthcare system. We describe how AI-based tools can augment existing clinical workflows by discussing the applications of AI to worklist prioritization and patient triage, the performance-boosting effects of AI as a second reader, and the use of AI to facilitate complex quantifications. We also introduce prominent examples of recent AI applications, such as tuberculosis screening in resource-constrained environments, the detection of lung cancer with screening CT, and the diagnosis of COVID-19. We also provide examples of prognostic predictions and new discoveries beyond existing clinical practices. BACKGROUND: Artificial intelligence (AI) has shown promising performance for thoracic diseases, particularly in the field of thoracic radiology. However, it has not yet been established how AI-based image analysis systems can help physicians in clinical practice. METHODS: This review included peer-reviewed research articles on AI in the thorax published in English between 2015 and 2021. CONCLUSIONS: With advances in technology and appropriate preparation of physicians, AI could address various clinical problems that have not been solved due to a lack of clinical resources or technological limitations. KEYWORDS: Artificial intelligence (AI); deep learning (DL); computer aided diagnosis (CAD); thoracic radiology; pulmonary medicine