Cargando…
Towards predicting COVID-19 infection waves: A random-walk Monte Carlo simulation approach
Phenomenological and deterministic models are often used for the estimation of transmission parameters in an epidemic and for the prediction of its growth trajectory. Such analyses are usually based on single peak outbreak dynamics. In light of the present COVID-19 pandemic, there is a pressing need...
Autores principales: | Mahapatra, D.P., Triambak, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743467/ https://www.ncbi.nlm.nih.gov/pubmed/35035125 http://dx.doi.org/10.1016/j.chaos.2021.111785 |
Ejemplares similares
-
A random walk Monte Carlo simulation study of COVID-19-like infection spread
por: Triambak, S., et al.
Publicado: (2021) -
Spreading of infections on random graphs: A percolation-type model for COVID-19
por: Croccolo, Fabrizio, et al.
Publicado: (2020) -
Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches
por: Malki, Zohair, et al.
Publicado: (2020) -
Design and simulation of mechanical ventilators
por: El-Hadj, Abdellah, et al.
Publicado: (2021) -
A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China
por: Yadav, Ram Prasad, et al.
Publicado: (2020)