Cargando…
Clinical prediction rule for bacteremia with pyelonephritis and hospitalization judgment: chi-square automatic interaction detector (CHAID) decision tree analysis model
OBJECTIVE: This study was performed to identify predictive factors for bacteremia among patients with pyelonephritis using a chi-square automatic interaction detector (CHAID) decision tree analysis model. METHODS: This retrospective cross-sectional survey was performed at Juntendo University Nerima...
Autores principales: | Fukui, Sayato, Inui, Akihiro, Saita, Mizue, Kobayashi, Daiki, Naito, Toshio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743944/ https://www.ncbi.nlm.nih.gov/pubmed/34986702 http://dx.doi.org/10.1177/03000605211065658 |
Ejemplares similares
-
Predictive Rule for Mortality of Inpatients With Escherichia coli Bacteremia: Chi-Square Automatic Interaction Detector Decision Tree Analysis Model
por: Nakanishi, Yudai, et al.
Publicado: (2023) -
Clinical prediction rule for bacterial arthritis: Chi-squared
automatic interaction detector decision tree analysis model
por: Kushiro, Seiko, et al.
Publicado: (2023) -
Comparison of the clinical parameters of patients with COVID-19 and influenza using blood test data: a retrospective cross-sectional survey
por: Fukui, Sayato, et al.
Publicado: (2022) -
A Predictive Rule for COVID-19 Pneumonia Among COVID-19 Patients: A Classification and Regression Tree (CART) Analysis Model
por: Fukui, Sayato, et al.
Publicado: (2023) -
Useful Predictive Factors for Bacteremia among Outpatients with Pyelonephritis
por: Nakamura, Nobuhiro, et al.
Publicado: (2018)