Cargando…
Androgens and Parkinson's Disease: A Review of Human Studies and Animal Models
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. A greater prevalence and incidence of PD are reported in men than in women, suggesting a potential contribution of sex, genetic difference and/or sex hormones. This review presents an o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744006/ https://www.ncbi.nlm.nih.gov/pubmed/35024696 http://dx.doi.org/10.1089/andro.2021.0011 |
Sumario: | Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. A greater prevalence and incidence of PD are reported in men than in women, suggesting a potential contribution of sex, genetic difference and/or sex hormones. This review presents an overview of epidemiological and clinical studies investigating sex differences in the incidence and symptoms of PD. This sex difference is replicated in animal models of PD showing an important neuroprotective role of sex steroids. Therefore, although gender and genetic factors likely contribute to the sex difference in PD, focus here will be on sex hormones because of their neuroprotective role. Androgens receive less attention than estrogen. It is well known that endogenous androgens are more abundant in healthy men than in women and decrease with aging; lower levels are reported in PD men than in healthy male subjects. Drug treatments with androgens, androgen precursors, antiandrogens, and drugs modifying androgen metabolism are available to treat various endocrine conditions, thus having translational value for PD but none have yet given sufficient positive effects for PD. Variability in the androgen receptor is reported in humans and is an additional factor in the response to androgens. In animal models of PD used to study neuroprotective activity, the androgens testosterone and dihydrotestosterone have given inconsistent results. 5α-Reductase inhibitors have shown neuroprotective activity in animal models of PD and antidyskinetic activity. Hence, androgens have not consistently shown beneficial or deleterious effects in PD but numerous androgen-related drugs are available that could be repurposed for PD. |
---|