Cargando…
A D-vine copula-based quantile regression model with spatial dependence for COVID-19 infection rate in Italy
The main determinants of COVID-19 spread in Italy are investigated, in this work, by means of a D-vine copula based quantile regression. The outcome is the COVID-19 cumulative infection rate registered on October 30th 2020, with reference to the 107 Italian provinces, and it is regressed on some cov...
Autores principales: | D’Urso, Pierpaolo, De Giovanni, Livia, Vitale, Vincenzina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744361/ https://www.ncbi.nlm.nih.gov/pubmed/35036295 http://dx.doi.org/10.1016/j.spasta.2021.100586 |
Ejemplares similares
-
Spatial robust fuzzy clustering of COVID 19 time series based on B-splines
por: D’Urso, Pierpaolo, et al.
Publicado: (2022) -
Spatio-temporal Object-Oriented Bayesian Network modelling of the COVID-19 Italian outbreak data
por: Vitale, Vincenzina, et al.
Publicado: (2022) -
Mixed vine copula flows for flexible modeling of neural dependencies
por: Mitskopoulos, Lazaros, et al.
Publicado: (2022) -
Analyzing dependent data with vine copulas: a practical guide with R
por: Czado, Claudia
Publicado: (2019) -
Measuring Competitiveness at NUTS3 Level and Territorial Partitioning of the Italian Provinces
por: D’Urso, Pierpaolo, et al.
Publicado: (2022)