Cargando…

On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin–Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer–Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy

Due to the fact that surfactant molecules are known to alter the structure (and consequently the function) of a protein, protein–surfactant interactions are very important in the biological, pharmaceutical, and cosmetic industries. Although there are numerous studies on the interactions of albumins...

Descripción completa

Detalles Bibliográficos
Autores principales: Żamojć, Krzysztof, Wyrzykowski, Dariusz, Chmurzyński, Lech
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744808/
https://www.ncbi.nlm.nih.gov/pubmed/35008466
http://dx.doi.org/10.3390/ijms23010041
_version_ 1784630197914435584
author Żamojć, Krzysztof
Wyrzykowski, Dariusz
Chmurzyński, Lech
author_facet Żamojć, Krzysztof
Wyrzykowski, Dariusz
Chmurzyński, Lech
author_sort Żamojć, Krzysztof
collection PubMed
description Due to the fact that surfactant molecules are known to alter the structure (and consequently the function) of a protein, protein–surfactant interactions are very important in the biological, pharmaceutical, and cosmetic industries. Although there are numerous studies on the interactions of albumins with surfactants, the investigations are often performed at fixed environmental conditions and limited to separate surface-active agents and consequently do not present an appropriate comparison between their different types and structures. In the present paper, the interactions between selected cationic, anionic, and nonionic surfactants, namely hexadecylpyridinium chloride (CPC), hexadecyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene glycol sorbitan monolaurate, monopalmitate, and monooleate (TWEEN 20, TWEEN 40, and TWEEN 80, respectively) with bovine serum albumin (BSA) were studied qualitatively and quantitatively in an aqueous solution (10 mM cacodylate buffer; pH 5.0 and 7.0) by steady-state fluorescence spectroscopy supported by UV spectrophotometry and CD spectroscopy. Since in the case of all studied systems, the fluorescence intensity of BSA decreased regularly and significantly under the action of the surfactants added, the fluorescence quenching mechanism was analyzed thoroughly with the use of the Stern–Volmer equation (and its modification) and attributed to the formation of BSA–surfactant complexes. The binding efficiency and mode of interactions were evaluated among others by the determination, comparison, and discussion of the values of binding (association) constants of the newly formed complexes and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS). Furthermore, the influence of the structure of the chosen surfactants (charge of hydrophilic head and length of hydrophobic chain) as well as different environmental conditions (pH, temperature) on the binding mode and the strength of the interaction has been investigated and elucidated.
format Online
Article
Text
id pubmed-8744808
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87448082022-01-11 On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin–Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer–Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy Żamojć, Krzysztof Wyrzykowski, Dariusz Chmurzyński, Lech Int J Mol Sci Article Due to the fact that surfactant molecules are known to alter the structure (and consequently the function) of a protein, protein–surfactant interactions are very important in the biological, pharmaceutical, and cosmetic industries. Although there are numerous studies on the interactions of albumins with surfactants, the investigations are often performed at fixed environmental conditions and limited to separate surface-active agents and consequently do not present an appropriate comparison between their different types and structures. In the present paper, the interactions between selected cationic, anionic, and nonionic surfactants, namely hexadecylpyridinium chloride (CPC), hexadecyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene glycol sorbitan monolaurate, monopalmitate, and monooleate (TWEEN 20, TWEEN 40, and TWEEN 80, respectively) with bovine serum albumin (BSA) were studied qualitatively and quantitatively in an aqueous solution (10 mM cacodylate buffer; pH 5.0 and 7.0) by steady-state fluorescence spectroscopy supported by UV spectrophotometry and CD spectroscopy. Since in the case of all studied systems, the fluorescence intensity of BSA decreased regularly and significantly under the action of the surfactants added, the fluorescence quenching mechanism was analyzed thoroughly with the use of the Stern–Volmer equation (and its modification) and attributed to the formation of BSA–surfactant complexes. The binding efficiency and mode of interactions were evaluated among others by the determination, comparison, and discussion of the values of binding (association) constants of the newly formed complexes and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS). Furthermore, the influence of the structure of the chosen surfactants (charge of hydrophilic head and length of hydrophobic chain) as well as different environmental conditions (pH, temperature) on the binding mode and the strength of the interaction has been investigated and elucidated. MDPI 2021-12-21 /pmc/articles/PMC8744808/ /pubmed/35008466 http://dx.doi.org/10.3390/ijms23010041 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Żamojć, Krzysztof
Wyrzykowski, Dariusz
Chmurzyński, Lech
On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin–Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer–Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy
title On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin–Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer–Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy
title_full On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin–Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer–Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy
title_fullStr On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin–Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer–Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy
title_full_unstemmed On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin–Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer–Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy
title_short On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin–Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer–Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy
title_sort on the effect of ph, temperature, and surfactant structure on bovine serum albumin–cationic/anionic/nonionic surfactants interactions in cacodylate buffer–fluorescence quenching studies supported by uv spectrophotometry and cd spectroscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744808/
https://www.ncbi.nlm.nih.gov/pubmed/35008466
http://dx.doi.org/10.3390/ijms23010041
work_keys_str_mv AT zamojckrzysztof ontheeffectofphtemperatureandsurfactantstructureonbovineserumalbumincationicanionicnonionicsurfactantsinteractionsincacodylatebufferfluorescencequenchingstudiessupportedbyuvspectrophotometryandcdspectroscopy
AT wyrzykowskidariusz ontheeffectofphtemperatureandsurfactantstructureonbovineserumalbumincationicanionicnonionicsurfactantsinteractionsincacodylatebufferfluorescencequenchingstudiessupportedbyuvspectrophotometryandcdspectroscopy
AT chmurzynskilech ontheeffectofphtemperatureandsurfactantstructureonbovineserumalbumincationicanionicnonionicsurfactantsinteractionsincacodylatebufferfluorescencequenchingstudiessupportedbyuvspectrophotometryandcdspectroscopy