Cargando…
Green and Highly-Efficient Microwave Synthesis Route for Sulfur/Carbon Composite for Li-S Battery
Multiporous carbons (MPCs) are prepared using ZnO as a hard template and biomass pyrolysis oil as the carbon source. It is shown that the surface area, pore volume, and mesopore/micropore ratio of the as-prepared MPCs can be easily controlled by adjusting the ZnO/oil ratio. Sulfur/MPC (S/MPC) compos...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744887/ https://www.ncbi.nlm.nih.gov/pubmed/35008462 http://dx.doi.org/10.3390/ijms23010039 |
Sumario: | Multiporous carbons (MPCs) are prepared using ZnO as a hard template and biomass pyrolysis oil as the carbon source. It is shown that the surface area, pore volume, and mesopore/micropore ratio of the as-prepared MPCs can be easily controlled by adjusting the ZnO/oil ratio. Sulfur/MPC (S/MPC) composite is prepared by blending sulfur powder with the as-prepared MPCs followed by microwave heating at three different powers (100 W/200 W/300 W) for 60 s. The unique micro/mesostructure characteristics of the resulting porous carbons not only endow the S/MPC composite with sufficient available space for sulfur storage, but also provide favorable and efficient channels for Li-ions/electrons transportation. When applied as the electrode material in a lithium-ion battery (LIB), the S/MPC composite shows a reversible capacity (about 500 mAh g(−1)) and a high columbic efficiency (>95%) after 70 cycles. Overall, the method proposed in this study provides a simple and green approach for the rapid production of MPCs and S/MPC composite for high-performance LIBs. |
---|