Cargando…

Effects of SGLT2 Inhibitors on Atherosclerosis: Lessons from Cardiovascular Clinical Outcomes in Type 2 Diabetic Patients and Basic Researches

Atherosclerosis-caused cardiovascular diseases (CVD) are the leading cause of mortality in type 2 diabetes mellitus (T2DM). Sodium-glucose cotransporter 2 (SGLT2) inhibitors are effective oral drugs for the treatment of T2DM patients. Multiple pre-clinical and clinical studies have indicated that SG...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jing, Hirai, Taro, Koya, Daisuke, Kitada, Munehiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745121/
https://www.ncbi.nlm.nih.gov/pubmed/35011882
http://dx.doi.org/10.3390/jcm11010137
Descripción
Sumario:Atherosclerosis-caused cardiovascular diseases (CVD) are the leading cause of mortality in type 2 diabetes mellitus (T2DM). Sodium-glucose cotransporter 2 (SGLT2) inhibitors are effective oral drugs for the treatment of T2DM patients. Multiple pre-clinical and clinical studies have indicated that SGLT2 inhibitors not only reduce blood glucose but also confer benefits with regard to body weight, insulin resistance, lipid profiles and blood pressure. Recently, some cardiovascular outcome trials have demonstrated the safety and cardiovascular benefits of SGLT2 inhibitors beyond glycemic control. The SGLT2 inhibitors empagliflozin, canagliflozin, dapagliflozin and ertugliflozin reduce the rates of major adverse cardiovascular events and of hospitalization for heart failure in T2DM patients regardless of CVD. The potential mechanisms of SGLT2 inhibitors on cardioprotection may be involved in improving the function of vascular endothelial cells, suppressing oxidative stress, inhibiting inflammation and regulating autophagy, which further protect from the progression of atherosclerosis. Here, we summarized the pre-clinical and clinical evidence of SGLT2 inhibitors on cardioprotection and discussed the potential molecular mechanisms of SGLT2 inhibitors in preventing the pathogenesis of atherosclerosis and CVD.