Cargando…
Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex
The gateway reflex is a mechanism by which neural inputs regulate chemokine expression at endothelial cell barriers, thereby establishing gateways for the invasion of autoreactive T cells into barrier-protected tissues. In this study, we hypothesized that rod photoreceptor dysfunction causes remodel...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745287/ https://www.ncbi.nlm.nih.gov/pubmed/35008877 http://dx.doi.org/10.3390/ijms23010453 |
_version_ | 1784630308756258816 |
---|---|
author | Stofkova, Andrea Zloh, Miloslav Andreanska, Dominika Fiserova, Ivana Kubovciak, Jan Hejda, Jan Kutilek, Patrik Murakami, Masaaki |
author_facet | Stofkova, Andrea Zloh, Miloslav Andreanska, Dominika Fiserova, Ivana Kubovciak, Jan Hejda, Jan Kutilek, Patrik Murakami, Masaaki |
author_sort | Stofkova, Andrea |
collection | PubMed |
description | The gateway reflex is a mechanism by which neural inputs regulate chemokine expression at endothelial cell barriers, thereby establishing gateways for the invasion of autoreactive T cells into barrier-protected tissues. In this study, we hypothesized that rod photoreceptor dysfunction causes remodeling of retinal neural activity, which influences the blood–retinal barrier and the development of retinal inflammation. We evaluated this hypothesis using Gnat1(rd17) mice, a model of night blindness with late-onset rod-cone dystrophy, and experimental autoimmune uveoretinitis (EAU). Retinal remodeling and its effect on EAU development were investigated by transcriptome profiling, target identification, and functional validation. We showed that Gnat1(rd17) mice primarily underwent alterations in their retinal dopaminergic system, triggering the development of an exacerbated EAU, which was counteracted by dopamine replacement with L-DOPA administered either systemically or locally. Remarkably, dopamine acted on retinal endothelial cells to inhibit NF-κB and STAT3 activity and the expression of downstream target genes such as chemokines involved in T cell recruitment. These results suggest that rod-mediated dopamine release functions in a gateway reflex manner in the homeostatic control of immune cell entry into the retina, and the loss of retinal dopaminergic activity in conditions associated with rod dysfunction increases the susceptibility to autoimmune uveitis. |
format | Online Article Text |
id | pubmed-8745287 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87452872022-01-11 Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex Stofkova, Andrea Zloh, Miloslav Andreanska, Dominika Fiserova, Ivana Kubovciak, Jan Hejda, Jan Kutilek, Patrik Murakami, Masaaki Int J Mol Sci Article The gateway reflex is a mechanism by which neural inputs regulate chemokine expression at endothelial cell barriers, thereby establishing gateways for the invasion of autoreactive T cells into barrier-protected tissues. In this study, we hypothesized that rod photoreceptor dysfunction causes remodeling of retinal neural activity, which influences the blood–retinal barrier and the development of retinal inflammation. We evaluated this hypothesis using Gnat1(rd17) mice, a model of night blindness with late-onset rod-cone dystrophy, and experimental autoimmune uveoretinitis (EAU). Retinal remodeling and its effect on EAU development were investigated by transcriptome profiling, target identification, and functional validation. We showed that Gnat1(rd17) mice primarily underwent alterations in their retinal dopaminergic system, triggering the development of an exacerbated EAU, which was counteracted by dopamine replacement with L-DOPA administered either systemically or locally. Remarkably, dopamine acted on retinal endothelial cells to inhibit NF-κB and STAT3 activity and the expression of downstream target genes such as chemokines involved in T cell recruitment. These results suggest that rod-mediated dopamine release functions in a gateway reflex manner in the homeostatic control of immune cell entry into the retina, and the loss of retinal dopaminergic activity in conditions associated with rod dysfunction increases the susceptibility to autoimmune uveitis. MDPI 2021-12-31 /pmc/articles/PMC8745287/ /pubmed/35008877 http://dx.doi.org/10.3390/ijms23010453 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Stofkova, Andrea Zloh, Miloslav Andreanska, Dominika Fiserova, Ivana Kubovciak, Jan Hejda, Jan Kutilek, Patrik Murakami, Masaaki Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex |
title | Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex |
title_full | Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex |
title_fullStr | Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex |
title_full_unstemmed | Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex |
title_short | Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex |
title_sort | depletion of retinal dopaminergic activity in a mouse model of rod dysfunction exacerbates experimental autoimmune uveoretinitis: a role for the gateway reflex |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745287/ https://www.ncbi.nlm.nih.gov/pubmed/35008877 http://dx.doi.org/10.3390/ijms23010453 |
work_keys_str_mv | AT stofkovaandrea depletionofretinaldopaminergicactivityinamousemodelofroddysfunctionexacerbatesexperimentalautoimmuneuveoretinitisaroleforthegatewayreflex AT zlohmiloslav depletionofretinaldopaminergicactivityinamousemodelofroddysfunctionexacerbatesexperimentalautoimmuneuveoretinitisaroleforthegatewayreflex AT andreanskadominika depletionofretinaldopaminergicactivityinamousemodelofroddysfunctionexacerbatesexperimentalautoimmuneuveoretinitisaroleforthegatewayreflex AT fiserovaivana depletionofretinaldopaminergicactivityinamousemodelofroddysfunctionexacerbatesexperimentalautoimmuneuveoretinitisaroleforthegatewayreflex AT kubovciakjan depletionofretinaldopaminergicactivityinamousemodelofroddysfunctionexacerbatesexperimentalautoimmuneuveoretinitisaroleforthegatewayreflex AT hejdajan depletionofretinaldopaminergicactivityinamousemodelofroddysfunctionexacerbatesexperimentalautoimmuneuveoretinitisaroleforthegatewayreflex AT kutilekpatrik depletionofretinaldopaminergicactivityinamousemodelofroddysfunctionexacerbatesexperimentalautoimmuneuveoretinitisaroleforthegatewayreflex AT murakamimasaaki depletionofretinaldopaminergicactivityinamousemodelofroddysfunctionexacerbatesexperimentalautoimmuneuveoretinitisaroleforthegatewayreflex |