Cargando…

Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators

Nanogenerators are interesting for biomedical applications, with a great potential for electrical stimulation of excitable cells. Piezoelectric ZnO nanosheets present unique properties for tissue engineering. In this study, nanogenerator arrays based on ZnO nanosheets are fabricated on transparent c...

Descripción completa

Detalles Bibliográficos
Autores principales: Blanquer, Andreu, Careta, Oriol, Anido-Varela, Laura, Aranda, Aida, Ibáñez, Elena, Esteve, Jaume, Nogués, Carme, Murillo, Gonzalo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745485/
https://www.ncbi.nlm.nih.gov/pubmed/35008860
http://dx.doi.org/10.3390/ijms23010432
_version_ 1784630356884848640
author Blanquer, Andreu
Careta, Oriol
Anido-Varela, Laura
Aranda, Aida
Ibáñez, Elena
Esteve, Jaume
Nogués, Carme
Murillo, Gonzalo
author_facet Blanquer, Andreu
Careta, Oriol
Anido-Varela, Laura
Aranda, Aida
Ibáñez, Elena
Esteve, Jaume
Nogués, Carme
Murillo, Gonzalo
author_sort Blanquer, Andreu
collection PubMed
description Nanogenerators are interesting for biomedical applications, with a great potential for electrical stimulation of excitable cells. Piezoelectric ZnO nanosheets present unique properties for tissue engineering. In this study, nanogenerator arrays based on ZnO nanosheets are fabricated on transparent coverslips to analyse the biocompatibility and the electromechanical interaction with two types of muscle cells, smooth and skeletal. Both cell types adhere, proliferate and differentiate on the ZnO nanogenerators. Interestingly, the amount of Zn ions released over time from the nanogenerators does not interfere with cell viability and does not trigger the associated inflammatory response, which is not triggered by the nanogenerators themselves either. The local electric field generated by the electromechanical nanogenerator–cell interaction stimulates smooth muscle cells by increasing cytosolic calcium ions, whereas no stimulation effect is observed on skeletal muscle cells. The random orientation of the ZnO nanogenerators, avoiding an overall action potential aligned along the muscle fibre, is hypothesised to be the cause of the cell-type dependent response. This demonstrates the need of optimizing the nanogenerator morphology, orientation and distribution according to the potential biomedical use. Thus, this study demonstrates the cell-scale stimulation triggered by biocompatible piezoelectric nanogenerators without using an external source on smooth muscle cells, although it remarks the cell type-dependent response.
format Online
Article
Text
id pubmed-8745485
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87454852022-01-11 Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators Blanquer, Andreu Careta, Oriol Anido-Varela, Laura Aranda, Aida Ibáñez, Elena Esteve, Jaume Nogués, Carme Murillo, Gonzalo Int J Mol Sci Article Nanogenerators are interesting for biomedical applications, with a great potential for electrical stimulation of excitable cells. Piezoelectric ZnO nanosheets present unique properties for tissue engineering. In this study, nanogenerator arrays based on ZnO nanosheets are fabricated on transparent coverslips to analyse the biocompatibility and the electromechanical interaction with two types of muscle cells, smooth and skeletal. Both cell types adhere, proliferate and differentiate on the ZnO nanogenerators. Interestingly, the amount of Zn ions released over time from the nanogenerators does not interfere with cell viability and does not trigger the associated inflammatory response, which is not triggered by the nanogenerators themselves either. The local electric field generated by the electromechanical nanogenerator–cell interaction stimulates smooth muscle cells by increasing cytosolic calcium ions, whereas no stimulation effect is observed on skeletal muscle cells. The random orientation of the ZnO nanogenerators, avoiding an overall action potential aligned along the muscle fibre, is hypothesised to be the cause of the cell-type dependent response. This demonstrates the need of optimizing the nanogenerator morphology, orientation and distribution according to the potential biomedical use. Thus, this study demonstrates the cell-scale stimulation triggered by biocompatible piezoelectric nanogenerators without using an external source on smooth muscle cells, although it remarks the cell type-dependent response. MDPI 2021-12-31 /pmc/articles/PMC8745485/ /pubmed/35008860 http://dx.doi.org/10.3390/ijms23010432 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Blanquer, Andreu
Careta, Oriol
Anido-Varela, Laura
Aranda, Aida
Ibáñez, Elena
Esteve, Jaume
Nogués, Carme
Murillo, Gonzalo
Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators
title Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators
title_full Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators
title_fullStr Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators
title_full_unstemmed Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators
title_short Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators
title_sort biocompatibility and electrical stimulation of skeletal and smooth muscle cells cultured on piezoelectric nanogenerators
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745485/
https://www.ncbi.nlm.nih.gov/pubmed/35008860
http://dx.doi.org/10.3390/ijms23010432
work_keys_str_mv AT blanquerandreu biocompatibilityandelectricalstimulationofskeletalandsmoothmusclecellsculturedonpiezoelectricnanogenerators
AT caretaoriol biocompatibilityandelectricalstimulationofskeletalandsmoothmusclecellsculturedonpiezoelectricnanogenerators
AT anidovarelalaura biocompatibilityandelectricalstimulationofskeletalandsmoothmusclecellsculturedonpiezoelectricnanogenerators
AT arandaaida biocompatibilityandelectricalstimulationofskeletalandsmoothmusclecellsculturedonpiezoelectricnanogenerators
AT ibanezelena biocompatibilityandelectricalstimulationofskeletalandsmoothmusclecellsculturedonpiezoelectricnanogenerators
AT estevejaume biocompatibilityandelectricalstimulationofskeletalandsmoothmusclecellsculturedonpiezoelectricnanogenerators
AT noguescarme biocompatibilityandelectricalstimulationofskeletalandsmoothmusclecellsculturedonpiezoelectricnanogenerators
AT murillogonzalo biocompatibilityandelectricalstimulationofskeletalandsmoothmusclecellsculturedonpiezoelectricnanogenerators