Cargando…
Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms
Background: Heart rate variability (HRV) and electrocardiogram (ECG)-derived respiration (EDR) have been used to detect sleep apnea (SA) for decades. The present study proposes an SA-detection algorithm using a machine-learning framework and bag-of-features (BoF) derived from an ECG spectrogram. Met...
Autores principales: | Lin, Cheng-Yu, Wang, Yi-Wen, Setiawan, Febryan, Trang, Nguyen Thi Hoang, Lin, Che-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745785/ https://www.ncbi.nlm.nih.gov/pubmed/35011934 http://dx.doi.org/10.3390/jcm11010192 |
Ejemplares similares
-
A Deep Learning Framework for Automatic Sleep Apnea Classification Based on Empirical Mode Decomposition Derived from Single-Lead Electrocardiogram
por: Setiawan, Febryan, et al.
Publicado: (2022) -
Identification of Neurodegenerative Diseases Based on Vertical Ground Reaction Force Classification Using Time–Frequency Spectrogram and Deep Learning Neural Network Features
por: Setiawan, Febryan, et al.
Publicado: (2021) -
Electrocardiogram classification using TSST-based spectrogram and ConViT
por: Bing, Pingping, et al.
Publicado: (2022) -
Implementation of a Deep Learning Algorithm Based on Vertical Ground Reaction Force Time–Frequency Features for the Detection and Severity Classification of Parkinson’s Disease
por: Setiawan, Febryan, et al.
Publicado: (2021) -
Structural Anomalies Detection from Electrocardiogram (ECG) with Spectrogram and Handcrafted Features
por: Li, Hongzu, et al.
Publicado: (2022)