Cargando…

Assessment of the Corrosion Behavior of Friction-Stir-Welded Dissimilar Aluminum Alloys

The fuel consumption of high-density automobiles has increased in recent years. Aluminum (Al) alloy is a suitable material for weight reduction in vehicles with high ductility and low weight. To address environmental problems in aircraft and maritime applications, in particular rust development and...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfattani, Rami, Yunus, Mohammed, Mohamed, Ahmed F., Alamro, Turki, Hassan, Mohamed K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745853/
https://www.ncbi.nlm.nih.gov/pubmed/35009406
http://dx.doi.org/10.3390/ma15010260
Descripción
Sumario:The fuel consumption of high-density automobiles has increased in recent years. Aluminum (Al) alloy is a suitable material for weight reduction in vehicles with high ductility and low weight. To address environmental problems in aircraft and maritime applications, in particular rust development and corrosion, the current study assesses the corrosion behavior during friction stir welding (FSW) of two dissimilar Al alloys (AA6061 and AA8011) in various corrosive conditions using salt spraying and submersion tests. Two acidic solutions and one alkaline solution are used in these tests, which are performed at room temperature. The two specimens (AA6061 and AA8011) and the weld region are suspended in a salt spraying chamber and a 5 wt.% NaCl solution is continually sprayed using the circulation pump for 60 h, with the specimens being weighed every 15 h to determine the corrosion rates. According to the salt spraying data, the weld zone has a higher corrosion resistance than the core components. For twenty-eight days, individual specimens are submerged in 3.5 wt.% HCl + H(2)O and H(2)SO(4) + H(2)O solutions and seawater. The weld area specimens exhibit stronger corrosion resistance than the base material specimens, and weight loss in the saltwater medium is lower when compared to the other test solutions, according to the corrosion analysis. The scanning electron microscope (SEM) analysis demonstrates that the base metal AA8011 is considerably corroded on its surface.