Cargando…

A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks

The impact of the pantograph of a rail vehicle on the overhead contact line depends on many factors. Among other things, the type of pantograph, i.e., the material of the sliding strip, influences the wear and possible damage to the sliding strip. The possibility of predicting pantograph failures ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuźnar, Małgorzata, Lorenc, Augustyn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745868/
https://www.ncbi.nlm.nih.gov/pubmed/35009248
http://dx.doi.org/10.3390/ma15010098
Descripción
Sumario:The impact of the pantograph of a rail vehicle on the overhead contact line depends on many factors. Among other things, the type of pantograph, i.e., the material of the sliding strip, influences the wear and possible damage to the sliding strip. The possibility of predicting pantograph failures may make it possible to reduce the number of these kinds of failures. This article presents a method for predicting the technical state of the pantograph by using artificial neural networks. The presented method enables the prediction of the wear and damage of the pantograph, with particular emphasis on carbon sliding strips. The paper compares 12 predictive models based on regression algorithms, where different training algorithms and activation functions were used. Two different types of training data were also used. Such a distinction made it possible to determine the optimal structure of the input and output data teaching the neural network, as well as the determination of the best structure and parameters of the model enabling the prediction of the technical condition of the current collector.