Cargando…
A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks
The impact of the pantograph of a rail vehicle on the overhead contact line depends on many factors. Among other things, the type of pantograph, i.e., the material of the sliding strip, influences the wear and possible damage to the sliding strip. The possibility of predicting pantograph failures ma...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745868/ https://www.ncbi.nlm.nih.gov/pubmed/35009248 http://dx.doi.org/10.3390/ma15010098 |
_version_ | 1784630450795315200 |
---|---|
author | Kuźnar, Małgorzata Lorenc, Augustyn |
author_facet | Kuźnar, Małgorzata Lorenc, Augustyn |
author_sort | Kuźnar, Małgorzata |
collection | PubMed |
description | The impact of the pantograph of a rail vehicle on the overhead contact line depends on many factors. Among other things, the type of pantograph, i.e., the material of the sliding strip, influences the wear and possible damage to the sliding strip. The possibility of predicting pantograph failures may make it possible to reduce the number of these kinds of failures. This article presents a method for predicting the technical state of the pantograph by using artificial neural networks. The presented method enables the prediction of the wear and damage of the pantograph, with particular emphasis on carbon sliding strips. The paper compares 12 predictive models based on regression algorithms, where different training algorithms and activation functions were used. Two different types of training data were also used. Such a distinction made it possible to determine the optimal structure of the input and output data teaching the neural network, as well as the determination of the best structure and parameters of the model enabling the prediction of the technical condition of the current collector. |
format | Online Article Text |
id | pubmed-8745868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87458682022-01-11 A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks Kuźnar, Małgorzata Lorenc, Augustyn Materials (Basel) Article The impact of the pantograph of a rail vehicle on the overhead contact line depends on many factors. Among other things, the type of pantograph, i.e., the material of the sliding strip, influences the wear and possible damage to the sliding strip. The possibility of predicting pantograph failures may make it possible to reduce the number of these kinds of failures. This article presents a method for predicting the technical state of the pantograph by using artificial neural networks. The presented method enables the prediction of the wear and damage of the pantograph, with particular emphasis on carbon sliding strips. The paper compares 12 predictive models based on regression algorithms, where different training algorithms and activation functions were used. Two different types of training data were also used. Such a distinction made it possible to determine the optimal structure of the input and output data teaching the neural network, as well as the determination of the best structure and parameters of the model enabling the prediction of the technical condition of the current collector. MDPI 2021-12-23 /pmc/articles/PMC8745868/ /pubmed/35009248 http://dx.doi.org/10.3390/ma15010098 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kuźnar, Małgorzata Lorenc, Augustyn A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks |
title | A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks |
title_full | A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks |
title_fullStr | A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks |
title_full_unstemmed | A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks |
title_short | A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks |
title_sort | method of predicting wear and damage of pantograph sliding strips based on artificial neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745868/ https://www.ncbi.nlm.nih.gov/pubmed/35009248 http://dx.doi.org/10.3390/ma15010098 |
work_keys_str_mv | AT kuznarmałgorzata amethodofpredictingwearanddamageofpantographslidingstripsbasedonartificialneuralnetworks AT lorencaugustyn amethodofpredictingwearanddamageofpantographslidingstripsbasedonartificialneuralnetworks AT kuznarmałgorzata methodofpredictingwearanddamageofpantographslidingstripsbasedonartificialneuralnetworks AT lorencaugustyn methodofpredictingwearanddamageofpantographslidingstripsbasedonartificialneuralnetworks |