Cargando…
Identification of Grain Oriented SiFe Steels Based on Imaging the Instantaneous Dynamics of Magnetic Barkhausen Noise Using Short-Time Fourier Transform and Deep Convolutional Neural Network
This paper presents a new approach to the extraction and analysis of information contained in magnetic Barkhausen noise (MBN) for evaluation of grain oriented (GO) electrical steels. The proposed methodology for MBN analysis is based on the combination of the Short-Time Fourier Transform for the obs...
Autores principales: | Maciusowicz, Michal, Psuj, Grzegorz, Kochmański, Paweł |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746057/ https://www.ncbi.nlm.nih.gov/pubmed/35009269 http://dx.doi.org/10.3390/ma15010118 |
Ejemplares similares
-
Time-Frequency Analysis of Barkhausen Noise for the Needs of Anisotropy Evaluation of Grain-Oriented Steels
por: Maciusowicz, Michal, et al.
Publicado: (2020) -
Use of Time-Frequency Representation of Magnetic Barkhausen Noise for Evaluation of Easy Magnetization Axis of Grain-Oriented Steel
por: Maciusowicz, Michal, et al.
Publicado: (2020) -
Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials
por: Maciusowicz, Michal, et al.
Publicado: (2019) -
A System for Monitoring of Broadband FMR Phenomenon in Low-Carbon Steel Films Subjected to Deformations
por: Psuj, Grzegorz, et al.
Publicado: (2021) -
Barkhausen noise for non-destructive testing and materials characterization in low carbon steels
por: Manh, Tu Le, et al.
Publicado: (2020)