Cargando…
Predicting the Ultimate Axial Capacity of Uniaxially Loaded CFST Columns Using Multiphysics Artificial Intelligence
The object of this research is concrete-filled steel tubes (CFST). The article aimed to develop a prediction Multiphysics model for the circular CFST column by using the Artificial Neural Network (ANN), the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Gene Expression Program (GEP). The data...
Autores principales: | Khan, Sangeen, Ali Khan, Mohsin, Zafar, Adeel, Javed, Muhammad Faisal, Aslam, Fahid, Musarat, Muhammad Ali, Vatin, Nikolai Ivanovich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746085/ https://www.ncbi.nlm.nih.gov/pubmed/35009186 http://dx.doi.org/10.3390/ma15010039 |
Ejemplares similares
-
Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
por: Ilyas, Israr, et al.
Publicado: (2021) -
Axial Compressive Strength Models of Eccentrically-Loaded Rectangular Reinforced Concrete Columns Confined with FRP
por: Isleem, Haytham F., et al.
Publicado: (2021) -
Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP
por: Nafees, Afnan, et al.
Publicado: (2021) -
Experimental Investigation on the Vertical Ductility of Rectangular CFST Columns Loaded Axially
por: Grzeszykowski, Bartosz, et al.
Publicado: (2022) -
Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques
por: Nafees, Afnan, et al.
Publicado: (2021)