Cargando…
A Nanoindentation Approach for Time-Dependent Evaluation of Surface Free Energy in Micro- and Nano-Structured Titanium
Surface free energy (SFE) of titanium surfaces plays a significant role in tissue engineering, as it affects the effectiveness and long-term stability of both active coatings and functionalization and the establishment of strong bonds to the newly growing bone. A new contact–mechanics methodology ba...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746133/ https://www.ncbi.nlm.nih.gov/pubmed/35009432 http://dx.doi.org/10.3390/ma15010287 |
Sumario: | Surface free energy (SFE) of titanium surfaces plays a significant role in tissue engineering, as it affects the effectiveness and long-term stability of both active coatings and functionalization and the establishment of strong bonds to the newly growing bone. A new contact–mechanics methodology based on high-resolution non-destructive elastic contacting nanoindentation is applied here to study SFE of micro- and nano-structured titanium surfaces, right after their preparation and as a function of exposure to air. The effectiveness of different surface treatments in enhancing SFE is assessed. A time-dependent decay of SFE within a few hours is observed, with kinetics related to the sample preparation. The fast, non-destructive method adopted allowed for SFE measurements in very hydrophilic conditions, establishing a reliable comparison between surfaces with different properties. |
---|