Cargando…
Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy
Bridges play an increasingly more important role in modern transportation, which is why many sensors are mounted on it in order to provide safety. However, supplying reliable power to these sensors has always been a great challenge. Scavenging energy from bridge vibration to power the wireless senso...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746159/ https://www.ncbi.nlm.nih.gov/pubmed/35009179 http://dx.doi.org/10.3390/ma15010033 |
_version_ | 1784630518231334912 |
---|---|
author | Zhou, Zhiyong Zhang, Haiwei Qin, Weiyang Zhu, Pei Wang, Ping Du, Wenfeng |
author_facet | Zhou, Zhiyong Zhang, Haiwei Qin, Weiyang Zhu, Pei Wang, Ping Du, Wenfeng |
author_sort | Zhou, Zhiyong |
collection | PubMed |
description | Bridges play an increasingly more important role in modern transportation, which is why many sensors are mounted on it in order to provide safety. However, supplying reliable power to these sensors has always been a great challenge. Scavenging energy from bridge vibration to power the wireless sensors has attracted more attention in recent years. Moreover, it has been proved that the linear energy harvester cannot always work efficiently since the vibration energy of the bridge distributes over a broad frequency band. In this paper, a nonlinear energy harvester is proposed to enhance the performance of harvesting bridge vibration energy. Analyses on potential energy, restoring force, and stiffness were carried out. By adjusting the separation distance between magnets, the harvester could own a low and flat potential energy, which could help the harvester oscillate on a high-energy orbit and generate high output. For validation, corresponding experiments were carried out. The results show that the output of the optimal configuration outperforms that of the linear one. Moreover, with the increase in vehicle speed, a component of extremely low frequency is gradually enhanced, which corresponds to the motion on the high-energy orbit. This study may give an effective method of harvesting energy from bridge vibration excited by moving vehicles with different moving speeds. |
format | Online Article Text |
id | pubmed-8746159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87461592022-01-11 Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy Zhou, Zhiyong Zhang, Haiwei Qin, Weiyang Zhu, Pei Wang, Ping Du, Wenfeng Materials (Basel) Article Bridges play an increasingly more important role in modern transportation, which is why many sensors are mounted on it in order to provide safety. However, supplying reliable power to these sensors has always been a great challenge. Scavenging energy from bridge vibration to power the wireless sensors has attracted more attention in recent years. Moreover, it has been proved that the linear energy harvester cannot always work efficiently since the vibration energy of the bridge distributes over a broad frequency band. In this paper, a nonlinear energy harvester is proposed to enhance the performance of harvesting bridge vibration energy. Analyses on potential energy, restoring force, and stiffness were carried out. By adjusting the separation distance between magnets, the harvester could own a low and flat potential energy, which could help the harvester oscillate on a high-energy orbit and generate high output. For validation, corresponding experiments were carried out. The results show that the output of the optimal configuration outperforms that of the linear one. Moreover, with the increase in vehicle speed, a component of extremely low frequency is gradually enhanced, which corresponds to the motion on the high-energy orbit. This study may give an effective method of harvesting energy from bridge vibration excited by moving vehicles with different moving speeds. MDPI 2021-12-21 /pmc/articles/PMC8746159/ /pubmed/35009179 http://dx.doi.org/10.3390/ma15010033 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Zhiyong Zhang, Haiwei Qin, Weiyang Zhu, Pei Wang, Ping Du, Wenfeng Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy |
title | Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy |
title_full | Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy |
title_fullStr | Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy |
title_full_unstemmed | Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy |
title_short | Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy |
title_sort | harvesting energy from bridge vibration by piezoelectric structure with magnets tailoring potential energy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746159/ https://www.ncbi.nlm.nih.gov/pubmed/35009179 http://dx.doi.org/10.3390/ma15010033 |
work_keys_str_mv | AT zhouzhiyong harvestingenergyfrombridgevibrationbypiezoelectricstructurewithmagnetstailoringpotentialenergy AT zhanghaiwei harvestingenergyfrombridgevibrationbypiezoelectricstructurewithmagnetstailoringpotentialenergy AT qinweiyang harvestingenergyfrombridgevibrationbypiezoelectricstructurewithmagnetstailoringpotentialenergy AT zhupei harvestingenergyfrombridgevibrationbypiezoelectricstructurewithmagnetstailoringpotentialenergy AT wangping harvestingenergyfrombridgevibrationbypiezoelectricstructurewithmagnetstailoringpotentialenergy AT duwenfeng harvestingenergyfrombridgevibrationbypiezoelectricstructurewithmagnetstailoringpotentialenergy |