Cargando…
Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches
To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming...
Autores principales: | Khan, Mohsin Ali, Farooq, Furqan, Javed, Mohammad Faisal, Zafar, Adeel, Ostrowski, Krzysztof Adam, Aslam, Fahid, Malazdrewicz, Seweryn, Maślak, Mariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746218/ https://www.ncbi.nlm.nih.gov/pubmed/35009206 http://dx.doi.org/10.3390/ma15010058 |
Ejemplares similares
-
A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified with Fly Ash
por: Farooq, Furqan, et al.
Publicado: (2021) -
Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
por: Ilyas, Israr, et al.
Publicado: (2021) -
Eco-Friendly Incorporation of Crumb Rubber and Waste Bagasse Ash in Bituminous Concrete Mix
por: Ullah, Sheraz, et al.
Publicado: (2022) -
Consideration of Critical Parameters for Improving the Efficiency of Concrete Structures Reinforced with FRP
por: Ostrowski, Krzysztof Adam, et al.
Publicado: (2022) -
Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
por: Ahmad, Ayaz, et al.
Publicado: (2021)