Cargando…

Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes

The polymer electrolyte system of methylcellulose (MC) doped with various sodium bromide (NaBr) salt concentrations is prepared in this study using the solution cast technique. FTIR and XRD were used to identify the structural changes in solid films. Sharp crystalline peaks appeared at the XRD patte...

Descripción completa

Detalles Bibliográficos
Autores principales: Faris, Balen K., Hassan, Ary A., Aziz, Shujahadeen B., Brza, Mohamad A., Abdullah, Aziz M., Abdalrahman, Ari A., Abu Ali, Ola A., Saleh, Dalia I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746227/
https://www.ncbi.nlm.nih.gov/pubmed/35009315
http://dx.doi.org/10.3390/ma15010170
_version_ 1784630533948440576
author Faris, Balen K.
Hassan, Ary A.
Aziz, Shujahadeen B.
Brza, Mohamad A.
Abdullah, Aziz M.
Abdalrahman, Ari A.
Abu Ali, Ola A.
Saleh, Dalia I.
author_facet Faris, Balen K.
Hassan, Ary A.
Aziz, Shujahadeen B.
Brza, Mohamad A.
Abdullah, Aziz M.
Abdalrahman, Ari A.
Abu Ali, Ola A.
Saleh, Dalia I.
author_sort Faris, Balen K.
collection PubMed
description The polymer electrolyte system of methylcellulose (MC) doped with various sodium bromide (NaBr) salt concentrations is prepared in this study using the solution cast technique. FTIR and XRD were used to identify the structural changes in solid films. Sharp crystalline peaks appeared at the XRD pattern at 40 and 50 wt.% of NaBr salt. The electrical impedance spectroscopy (EIS) study illustrates that the loading of NaBr increases the electrolyte conductivity at room temperature. The DC conductivity of 6.71 × 10(−6) S/cm is obtained for the highest conducting electrolyte. The EIS data are fitted with the electrical equivalent circuit (EEC) to determine the impedance parameters of each film. The EEC modeling helps determine the circuit elements, which is decisive from the engineering perspective. The DC conductivity tendency is further established by dielectric analysis. The EIS spectra analysis shows a decrease in bulk resistance, demonstrating free ion carriers and conductivity boost. The dielectric property and relaxation time confirmed the non-Debye behavior of the electrolyte system. An incomplete semicircle further confirms this behavior model in the Argand plot. The distribution of relaxation times is related to the presence of conducting ions in an amorphous structure. Dielectric properties are improved with the addition of NaBr salt. A high value of a dielectric constant is seen at the low frequency region.
format Online
Article
Text
id pubmed-8746227
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87462272022-01-11 Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes Faris, Balen K. Hassan, Ary A. Aziz, Shujahadeen B. Brza, Mohamad A. Abdullah, Aziz M. Abdalrahman, Ari A. Abu Ali, Ola A. Saleh, Dalia I. Materials (Basel) Article The polymer electrolyte system of methylcellulose (MC) doped with various sodium bromide (NaBr) salt concentrations is prepared in this study using the solution cast technique. FTIR and XRD were used to identify the structural changes in solid films. Sharp crystalline peaks appeared at the XRD pattern at 40 and 50 wt.% of NaBr salt. The electrical impedance spectroscopy (EIS) study illustrates that the loading of NaBr increases the electrolyte conductivity at room temperature. The DC conductivity of 6.71 × 10(−6) S/cm is obtained for the highest conducting electrolyte. The EIS data are fitted with the electrical equivalent circuit (EEC) to determine the impedance parameters of each film. The EEC modeling helps determine the circuit elements, which is decisive from the engineering perspective. The DC conductivity tendency is further established by dielectric analysis. The EIS spectra analysis shows a decrease in bulk resistance, demonstrating free ion carriers and conductivity boost. The dielectric property and relaxation time confirmed the non-Debye behavior of the electrolyte system. An incomplete semicircle further confirms this behavior model in the Argand plot. The distribution of relaxation times is related to the presence of conducting ions in an amorphous structure. Dielectric properties are improved with the addition of NaBr salt. A high value of a dielectric constant is seen at the low frequency region. MDPI 2021-12-27 /pmc/articles/PMC8746227/ /pubmed/35009315 http://dx.doi.org/10.3390/ma15010170 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Faris, Balen K.
Hassan, Ary A.
Aziz, Shujahadeen B.
Brza, Mohamad A.
Abdullah, Aziz M.
Abdalrahman, Ari A.
Abu Ali, Ola A.
Saleh, Dalia I.
Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes
title Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes
title_full Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes
title_fullStr Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes
title_full_unstemmed Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes
title_short Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes
title_sort impedance, electrical equivalent circuit (eec) modeling, structural (ftir and xrd), dielectric, and electric modulus study of mc-based ion-conducting solid polymer electrolytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746227/
https://www.ncbi.nlm.nih.gov/pubmed/35009315
http://dx.doi.org/10.3390/ma15010170
work_keys_str_mv AT farisbalenk impedanceelectricalequivalentcircuiteecmodelingstructuralftirandxrddielectricandelectricmodulusstudyofmcbasedionconductingsolidpolymerelectrolytes
AT hassanarya impedanceelectricalequivalentcircuiteecmodelingstructuralftirandxrddielectricandelectricmodulusstudyofmcbasedionconductingsolidpolymerelectrolytes
AT azizshujahadeenb impedanceelectricalequivalentcircuiteecmodelingstructuralftirandxrddielectricandelectricmodulusstudyofmcbasedionconductingsolidpolymerelectrolytes
AT brzamohamada impedanceelectricalequivalentcircuiteecmodelingstructuralftirandxrddielectricandelectricmodulusstudyofmcbasedionconductingsolidpolymerelectrolytes
AT abdullahazizm impedanceelectricalequivalentcircuiteecmodelingstructuralftirandxrddielectricandelectricmodulusstudyofmcbasedionconductingsolidpolymerelectrolytes
AT abdalrahmanaria impedanceelectricalequivalentcircuiteecmodelingstructuralftirandxrddielectricandelectricmodulusstudyofmcbasedionconductingsolidpolymerelectrolytes
AT abualiolaa impedanceelectricalequivalentcircuiteecmodelingstructuralftirandxrddielectricandelectricmodulusstudyofmcbasedionconductingsolidpolymerelectrolytes
AT salehdaliai impedanceelectricalequivalentcircuiteecmodelingstructuralftirandxrddielectricandelectricmodulusstudyofmcbasedionconductingsolidpolymerelectrolytes