Cargando…
Development of Prediction Model to Predict the Compressive Strength of Eco-Friendly Concrete Using Multivariate Polynomial Regression Combined with Stepwise Method
Concrete is the most widely used building material, but it is also a recognized pollutant, causing significant issues for sustainability in terms of resource depletion, energy use, and greenhouse gas emissions. As a result, efforts should be concentrated on reducing concrete’s environmental conseque...
Autores principales: | Imran, Hamza, Al-Abdaly, Nadia Moneem, Shamsa, Mohammed Hammodi, Shatnawi, Amjed, Ibrahim, Majed, Ostrowski, Krzysztof Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746230/ https://www.ncbi.nlm.nih.gov/pubmed/35009463 http://dx.doi.org/10.3390/ma15010317 |
Ejemplares similares
-
A message recovery attack on multivariate polynomial trapdoor function
por: Ali, Rashid, et al.
Publicado: (2023) -
Prediction Model of Concrete Initial Setting Time Based on Stepwise Regression Analysis
por: Liu, Wei-Jia, et al.
Publicado: (2021) -
Flexural capacity of eco-friendly reinforced concrete beams
por: Gerges, Nagib N., et al.
Publicado: (2023) -
Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches
por: Khan, Mohsin Ali, et al.
Publicado: (2021) -
Polynomial Multiple Regression Analysis of the Lubrication Effectiveness of Deep Drawing Quality Steel Sheets by Eco-Friendly Vegetable Oils
por: Trzepieciński, Tomasz
Publicado: (2022)