Cargando…
Artificial Neural Network Modelling for Optimizing the Optical Parameters of Plasmonic Paired Nanostructures
The Artificial Neural Network (ANN) has become an attractive approach in Machine Learning (ML) to analyze a complex data-driven problem. Due to its time efficient findings, it has became popular in many scientific fields such as physics, optics, and material science. This paper presents a new approa...
Autores principales: | Verma, Sneha, Chugh, Sunny, Ghosh, Souvik, Rahman, B. M. Azizur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746605/ https://www.ncbi.nlm.nih.gov/pubmed/35010120 http://dx.doi.org/10.3390/nano12010170 |
Ejemplares similares
-
A comprehensive deep learning method for empirical spectral prediction and its quantitative validation of nano-structured dimers
por: Verma, Sneha, et al.
Publicado: (2023) -
All-Opto Plasmonic-Controlled Bulk and Surface Sensitivity Analysis of a Paired Nano-Structured Antenna with a Label-Free Detection Approach
por: Verma, Sneha, et al.
Publicado: (2021) -
Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review
por: Rahman, B. M. Azizur, et al.
Publicado: (2022) -
3D Optical Vortex Trapping of Plasmonic Nanostructure
por: Liaw, Jiunn-Woei, et al.
Publicado: (2018) -
How
To Identify Plasmons from the Optical Response
of Nanostructures
por: Zhang, Runmin, et al.
Publicado: (2017)