Cargando…

Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices

We study the quantum transport properties of graphene nanoribbons (GNRs) with a different edge doping strategy using density functional theory combined with nonequilibrium Green’s function transport simulations. We show that boron and nitrogen edge doping on the electrodes region can substantially m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Haiqing, Xiao, Xianbo, Ang, Yee Sin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746629/
https://www.ncbi.nlm.nih.gov/pubmed/35010006
http://dx.doi.org/10.3390/nano12010056
Descripción
Sumario:We study the quantum transport properties of graphene nanoribbons (GNRs) with a different edge doping strategy using density functional theory combined with nonequilibrium Green’s function transport simulations. We show that boron and nitrogen edge doping on the electrodes region can substantially modify the electronic band structures and transport properties of the system. Remarkably, such an edge engineering strategy effectively transforms GNR into a molecular spintronic nanodevice with multiple exceptional transport properties, namely: (i) a dual spin filtering effect (SFE) with 100% filtering efficiency; (ii) a spin rectifier with a large rectification ratio (RR) of 1.9 × [Formula: see text]; and (iii) negative differential resistance with a peak-to-valley ratio (PVR) of 7.1 × [Formula: see text]. Our findings reveal a route towards the development of high-performance graphene spintronics technology using an electrodes edge engineering strategy.