Cargando…
Design and Synthesis of New Thiophene/Thieno[2,3-d]pyrimidines along with Their Cytotoxic Biological Evaluation as Tyrosine Kinase Inhibitors in Addition to Their Apoptotic and Autophagic Induction
This work describes the synthesis and anticancer activity against kinase enzymes of newly designed thiophene and thieno[2,3-d]pyrimidine derivatives, along with their potential to activate autophagic and apoptotic cell death in cancer cells. The designed compounds were scanned for their affinity for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746632/ https://www.ncbi.nlm.nih.gov/pubmed/35011354 http://dx.doi.org/10.3390/molecules27010123 |
_version_ | 1784630634087448576 |
---|---|
author | Elmongy, Elshaymaa I. Attallah, Nashwah G. M. Altwaijry, Najla AlKahtani, Manal Mubarak Henidi, Hanan Ali |
author_facet | Elmongy, Elshaymaa I. Attallah, Nashwah G. M. Altwaijry, Najla AlKahtani, Manal Mubarak Henidi, Hanan Ali |
author_sort | Elmongy, Elshaymaa I. |
collection | PubMed |
description | This work describes the synthesis and anticancer activity against kinase enzymes of newly designed thiophene and thieno[2,3-d]pyrimidine derivatives, along with their potential to activate autophagic and apoptotic cell death in cancer cells. The designed compounds were scanned for their affinity for kinases. The results were promising with affinity ranges from 46.7% to 13.3%. Molecular docking studies were performed, and the compounds were then screened for their antiproliferative effects. Interestingly, compounds 8 and 5 resulted in higher cytotoxic effects than the reference standard against MCF-7 and HepG-2. The compounds were evaluated for their induction of apoptosis and/or necrosis on HT-29 and HepG-2. Three compounds induced significant early apoptosis compared to untreated control HT-29 cells, and four derivatives were more significant compared to untreated HepG-2 cells. We further investigated the effect of four compounds on the autophagy process within HT-29, HepG-2, and MCF-7 cells with flow cytometry. Similar to the apoptosis results, compound 5 showed the highest autophagic induction among all compounds. The potential inhibitory activity of the synthesized compounds on kinases was assessed. Screened compounds showed inhibition activity ranging from 41.4% to 83.5%. Compounds recorded significant inhibition were further investigated for their specific FLT3 kinase inhibitory activity. Noticeably, Compound 5 exhibited the highest inhibitory activity against FLT3. |
format | Online Article Text |
id | pubmed-8746632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87466322022-01-11 Design and Synthesis of New Thiophene/Thieno[2,3-d]pyrimidines along with Their Cytotoxic Biological Evaluation as Tyrosine Kinase Inhibitors in Addition to Their Apoptotic and Autophagic Induction Elmongy, Elshaymaa I. Attallah, Nashwah G. M. Altwaijry, Najla AlKahtani, Manal Mubarak Henidi, Hanan Ali Molecules Article This work describes the synthesis and anticancer activity against kinase enzymes of newly designed thiophene and thieno[2,3-d]pyrimidine derivatives, along with their potential to activate autophagic and apoptotic cell death in cancer cells. The designed compounds were scanned for their affinity for kinases. The results were promising with affinity ranges from 46.7% to 13.3%. Molecular docking studies were performed, and the compounds were then screened for their antiproliferative effects. Interestingly, compounds 8 and 5 resulted in higher cytotoxic effects than the reference standard against MCF-7 and HepG-2. The compounds were evaluated for their induction of apoptosis and/or necrosis on HT-29 and HepG-2. Three compounds induced significant early apoptosis compared to untreated control HT-29 cells, and four derivatives were more significant compared to untreated HepG-2 cells. We further investigated the effect of four compounds on the autophagy process within HT-29, HepG-2, and MCF-7 cells with flow cytometry. Similar to the apoptosis results, compound 5 showed the highest autophagic induction among all compounds. The potential inhibitory activity of the synthesized compounds on kinases was assessed. Screened compounds showed inhibition activity ranging from 41.4% to 83.5%. Compounds recorded significant inhibition were further investigated for their specific FLT3 kinase inhibitory activity. Noticeably, Compound 5 exhibited the highest inhibitory activity against FLT3. MDPI 2021-12-26 /pmc/articles/PMC8746632/ /pubmed/35011354 http://dx.doi.org/10.3390/molecules27010123 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Elmongy, Elshaymaa I. Attallah, Nashwah G. M. Altwaijry, Najla AlKahtani, Manal Mubarak Henidi, Hanan Ali Design and Synthesis of New Thiophene/Thieno[2,3-d]pyrimidines along with Their Cytotoxic Biological Evaluation as Tyrosine Kinase Inhibitors in Addition to Their Apoptotic and Autophagic Induction |
title | Design and Synthesis of New Thiophene/Thieno[2,3-d]pyrimidines along with Their Cytotoxic Biological Evaluation as Tyrosine Kinase Inhibitors in Addition to Their Apoptotic and Autophagic Induction |
title_full | Design and Synthesis of New Thiophene/Thieno[2,3-d]pyrimidines along with Their Cytotoxic Biological Evaluation as Tyrosine Kinase Inhibitors in Addition to Their Apoptotic and Autophagic Induction |
title_fullStr | Design and Synthesis of New Thiophene/Thieno[2,3-d]pyrimidines along with Their Cytotoxic Biological Evaluation as Tyrosine Kinase Inhibitors in Addition to Their Apoptotic and Autophagic Induction |
title_full_unstemmed | Design and Synthesis of New Thiophene/Thieno[2,3-d]pyrimidines along with Their Cytotoxic Biological Evaluation as Tyrosine Kinase Inhibitors in Addition to Their Apoptotic and Autophagic Induction |
title_short | Design and Synthesis of New Thiophene/Thieno[2,3-d]pyrimidines along with Their Cytotoxic Biological Evaluation as Tyrosine Kinase Inhibitors in Addition to Their Apoptotic and Autophagic Induction |
title_sort | design and synthesis of new thiophene/thieno[2,3-d]pyrimidines along with their cytotoxic biological evaluation as tyrosine kinase inhibitors in addition to their apoptotic and autophagic induction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746632/ https://www.ncbi.nlm.nih.gov/pubmed/35011354 http://dx.doi.org/10.3390/molecules27010123 |
work_keys_str_mv | AT elmongyelshaymaai designandsynthesisofnewthiophenethieno23dpyrimidinesalongwiththeircytotoxicbiologicalevaluationastyrosinekinaseinhibitorsinadditiontotheirapoptoticandautophagicinduction AT attallahnashwahgm designandsynthesisofnewthiophenethieno23dpyrimidinesalongwiththeircytotoxicbiologicalevaluationastyrosinekinaseinhibitorsinadditiontotheirapoptoticandautophagicinduction AT altwaijrynajla designandsynthesisofnewthiophenethieno23dpyrimidinesalongwiththeircytotoxicbiologicalevaluationastyrosinekinaseinhibitorsinadditiontotheirapoptoticandautophagicinduction AT alkahtanimanalmubarak designandsynthesisofnewthiophenethieno23dpyrimidinesalongwiththeircytotoxicbiologicalevaluationastyrosinekinaseinhibitorsinadditiontotheirapoptoticandautophagicinduction AT henidihananali designandsynthesisofnewthiophenethieno23dpyrimidinesalongwiththeircytotoxicbiologicalevaluationastyrosinekinaseinhibitorsinadditiontotheirapoptoticandautophagicinduction |