Cargando…
Data-Centric Architecture for Self-Driving Laboratories with Autonomous Discovery of New Nanomaterials
Artificial intelligence (AI) approaches continue to spread in almost every research and technology branch. However, a simple adaptation of AI methods and algorithms successfully exploited in one area to another field may face unexpected problems. Accelerating the discovery of new functional material...
Autores principales: | Butakova, Maria A., Chernov, Andrey V., Kartashov, Oleg O., Soldatov, Alexander V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746699/ https://www.ncbi.nlm.nih.gov/pubmed/35009962 http://dx.doi.org/10.3390/nano12010012 |
Ejemplares similares
-
Self-Driving Laboratories for Development of New Functional Materials and Optimizing Known Reactions
por: Soldatov, Mikhail A., et al.
Publicado: (2021) -
XAS Data Preprocessing of Nanocatalysts for Machine Learning Applications
por: Kartashov, Oleg O., et al.
Publicado: (2021) -
Integrated Video and Acoustic Emission Data Fusion for Intelligent Decision Making in Material Surface Inspection System
por: Chernov, Andrey V., et al.
Publicado: (2022) -
Machine Learning and 3D Reconstruction of Materials Surface for Nondestructive Inspection
por: Kartashov, Oleg O., et al.
Publicado: (2022) -
Self-driving laboratory for accelerated discovery of thin-film materials
por: MacLeod, B. P., et al.
Publicado: (2020)