Cargando…
Phosphorus Co-Existing in Water: A New Mechanism to Boost Boron Removal by Calcined Oyster Shell Powder
The removal of boron (B) from water by co-precipitation with hydroxyapatite (HAP) has been extensively studied due to its low cost, ease of use and high efficiency. However, there is no explicit mechanism to express how resolved B was trapped by HAP. Thus, in this work, the process of removing B fro...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746779/ https://www.ncbi.nlm.nih.gov/pubmed/35011286 http://dx.doi.org/10.3390/molecules27010054 |
Sumario: | The removal of boron (B) from water by co-precipitation with hydroxyapatite (HAP) has been extensively studied due to its low cost, ease of use and high efficiency. However, there is no explicit mechanism to express how resolved B was trapped by HAP. Thus, in this work, the process of removing B from water was studied using a low-cost calcium (Ca) precipitation agent derived from used waste oyster shells. The results showed that the removal rate of B in the simulated wastewater by calcined oyster shell (COS) in the presence of phosphorus (P) is up to more than 90%, as opposed to virtually no removal without phosphate. For B removal, the treated water needs to be an alkaline solution with a high pH above 12, where B is removed as [CaB(OH)(4)](+) but is not molecular. Finally, the synergistic mechanism of co-precipitation between HAP and dissolved B, occlusion co-precipitation, was explained in detail. The proposed method discovered the relationship between Ca, P and B, and was aimed at removing B without secondary pollution through co-precipitation. |
---|