Cargando…

A Study of the Key Factors on Production of Graphene Materials from Fe-Lignin Nanocomposites through a Molecular Cracking and Welding (MCW) Method

In this work, few-layer graphene materials were produced from Fe-lignin nanocomposites through a molecular cracking and welding (MCW) method. MCW process is a low-cost, scalable technique to fabricate few-layer graphene materials. It involves preparing metal (M)-lignin nanocomposites from kraft lign...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Qiangu, Ketelboeter, Timothy, Cai, Zhiyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746869/
https://www.ncbi.nlm.nih.gov/pubmed/35011386
http://dx.doi.org/10.3390/molecules27010154
Descripción
Sumario:In this work, few-layer graphene materials were produced from Fe-lignin nanocomposites through a molecular cracking and welding (MCW) method. MCW process is a low-cost, scalable technique to fabricate few-layer graphene materials. It involves preparing metal (M)-lignin nanocomposites from kraft lignin and a transition metal catalyst, pretreating the M-lignin composites, and forming of the graphene-encapsulated metal structures by catalytic graphitization the M-lignin composites. Then, these graphene-encapsulated metal structures are opened by the molecule cracking reagents. The graphene shells are peeled off the metal core and simultaneously welded and reconstructed to graphene materials under a selected welding reagent. The critical parameters, including heating temperature, heating time, and particle sizes of the Fe-lignin composites, have been explored to understand the graphene formation mechanism and to obtain the optimized process parameters to improve the yield and selectivity of graphene materials.