Cargando…

To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses

Plants often live in adverse environmental conditions and are exposed to various stresses, such as heat, cold, heavy metals, salt, radiation, poor lighting, nutrient deficiency, drought, or flooding. To adapt to unfavorable environments, plants have evolved specialized molecular mechanisms that serv...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Hao, Bullock, David A., Alonso, Jose M., Stepanova, Anna N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747122/
https://www.ncbi.nlm.nih.gov/pubmed/35009037
http://dx.doi.org/10.3390/plants11010033
Descripción
Sumario:Plants often live in adverse environmental conditions and are exposed to various stresses, such as heat, cold, heavy metals, salt, radiation, poor lighting, nutrient deficiency, drought, or flooding. To adapt to unfavorable environments, plants have evolved specialized molecular mechanisms that serve to balance the trade-off between abiotic stress responses and growth. These mechanisms enable plants to continue to develop and reproduce even under adverse conditions. Ethylene, as a key growth regulator, is leveraged by plants to mitigate the negative effects of some of these stresses on plant development and growth. By cooperating with other hormones, such as jasmonic acid (JA), abscisic acid (ABA), brassinosteroids (BR), auxin, gibberellic acid (GA), salicylic acid (SA), and cytokinin (CK), ethylene triggers defense and survival mechanisms thereby coordinating plant growth and development in response to abiotic stresses. This review describes the crosstalk between ethylene and other plant hormones in tipping the balance between plant growth and abiotic stress responses.