Cargando…

Representation of Spatial Variability of the Water Fluxes over the Congo Basin Region

The Congo Basin, being one of the major basins in the tropics, is important to the global climate, yet its hydrology is perhaps the least understood. Although various reanalysis/analysis datasets have been used to improve our understanding of the basin’s hydroclimate, they have been historically dif...

Descripción completa

Detalles Bibliográficos
Autores principales: De Benedetti, Marc, Moore, G. W. K., Xu, Xiaoyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747179/
https://www.ncbi.nlm.nih.gov/pubmed/35009625
http://dx.doi.org/10.3390/s22010084
Descripción
Sumario:The Congo Basin, being one of the major basins in the tropics, is important to the global climate, yet its hydrology is perhaps the least understood. Although various reanalysis/analysis datasets have been used to improve our understanding of the basin’s hydroclimate, they have been historically difficult to validate due to sparse in situ measurements. This study analyzes the impact of model resolution on the spatial variability of the Basin’s hydroclimate using the Decorrelation Length Scale (DLCS) technique, as it is not subject to uniform model bias. The spatial variability within the precipitation (P), evaporation/evapotranspiration (E), and precipitation-minus-evaporation (P-E) fields were investigated across four spatial resolutions using reanalysis/analysis datasets from the ECMWF ranging from 9–75 km. Results show that the representation of P and P-E fields over the Basin and the equatorial Atlantic Ocean are sensitive to model resolution, as the spatial patterns of their DCLS results are resolution-dependent. However, the resolution-independent features are predominantly found in the E field. Furthermore, the P field is the dominant source of spatial variability of P-E, occurring over the land and the equatorial Atlantic Ocean, while over the Southern Atlantic, P-E is mainly governed by the E field, with both showing weak spatial variability.