Cargando…
Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices
Antimony(III) is a rare element whose chemical and toxicological properties bear a resemblance to those of arsenic. As a result, the presence of Sb(III) in water might have adverse effects on human health and aquatic life. However, Sb(III) exists at very ultra-trace levels which may be difficult for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747241/ https://www.ncbi.nlm.nih.gov/pubmed/35012044 http://dx.doi.org/10.3390/polym14010021 |
_version_ | 1784630785946419200 |
---|---|
author | Jakavula, Silindokuhle Biata, Nkositetile Raphael Dimpe, Kgogobi M. Pakade, Vusumzi Emmanuel Nomngongo, Philiswa Nosizo |
author_facet | Jakavula, Silindokuhle Biata, Nkositetile Raphael Dimpe, Kgogobi M. Pakade, Vusumzi Emmanuel Nomngongo, Philiswa Nosizo |
author_sort | Jakavula, Silindokuhle |
collection | PubMed |
description | Antimony(III) is a rare element whose chemical and toxicological properties bear a resemblance to those of arsenic. As a result, the presence of Sb(III) in water might have adverse effects on human health and aquatic life. However, Sb(III) exists at very ultra-trace levels which may be difficult for direct quantification. Therefore, there is a need to develop efficient and reliable selective extraction and preconcentration of Sb(III) in water systems. Herein, a selective extraction and preconcentration of trace Sb(III) from environmental samples was achieved using ultrasound assisted magnetic solid-phase extraction (UA-MSPE) based on magnetic Sb(III) ion imprinted polymer-Fe(3)O(4)@SiO(2)@CNFs nanocomposite as an adsorbent. The amount of antimony in samples was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The UA-MSPE conditions were investigated using fractional factorial design and response surface methodology based on central composite design. The Sb(III)-IIP sorbent displayed excellent selectivity towards Sb(III) as compared to NIIP adsorbent. Under optimised conditions, the enrichment factor, limit of detection (LOD) and limit of quantification (LOQ) of UA-MSPE/ICP-OES for Sb(III) were 71.3, 0.13 µg L(−1) and 0.44 µg L(−1), respectively. The intra-day and inter-day precision expressed as relative standard deviations (%RSDs, n = 10 and n = 5) were 2.4 and 4.7, respectively. The proposed analytical method was applied in the determination of trace Sb(III) in environmental samples. Furthermore, the accuracy of the method was evaluated using spiked recovery experiments and the percentage recoveries ranged from 95–98.3%. |
format | Online Article Text |
id | pubmed-8747241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87472412022-01-11 Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices Jakavula, Silindokuhle Biata, Nkositetile Raphael Dimpe, Kgogobi M. Pakade, Vusumzi Emmanuel Nomngongo, Philiswa Nosizo Polymers (Basel) Article Antimony(III) is a rare element whose chemical and toxicological properties bear a resemblance to those of arsenic. As a result, the presence of Sb(III) in water might have adverse effects on human health and aquatic life. However, Sb(III) exists at very ultra-trace levels which may be difficult for direct quantification. Therefore, there is a need to develop efficient and reliable selective extraction and preconcentration of Sb(III) in water systems. Herein, a selective extraction and preconcentration of trace Sb(III) from environmental samples was achieved using ultrasound assisted magnetic solid-phase extraction (UA-MSPE) based on magnetic Sb(III) ion imprinted polymer-Fe(3)O(4)@SiO(2)@CNFs nanocomposite as an adsorbent. The amount of antimony in samples was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The UA-MSPE conditions were investigated using fractional factorial design and response surface methodology based on central composite design. The Sb(III)-IIP sorbent displayed excellent selectivity towards Sb(III) as compared to NIIP adsorbent. Under optimised conditions, the enrichment factor, limit of detection (LOD) and limit of quantification (LOQ) of UA-MSPE/ICP-OES for Sb(III) were 71.3, 0.13 µg L(−1) and 0.44 µg L(−1), respectively. The intra-day and inter-day precision expressed as relative standard deviations (%RSDs, n = 10 and n = 5) were 2.4 and 4.7, respectively. The proposed analytical method was applied in the determination of trace Sb(III) in environmental samples. Furthermore, the accuracy of the method was evaluated using spiked recovery experiments and the percentage recoveries ranged from 95–98.3%. MDPI 2021-12-22 /pmc/articles/PMC8747241/ /pubmed/35012044 http://dx.doi.org/10.3390/polym14010021 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jakavula, Silindokuhle Biata, Nkositetile Raphael Dimpe, Kgogobi M. Pakade, Vusumzi Emmanuel Nomngongo, Philiswa Nosizo Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices |
title | Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices |
title_full | Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices |
title_fullStr | Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices |
title_full_unstemmed | Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices |
title_short | Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices |
title_sort | magnetic ion imprinted polymers (miips) for selective extraction and preconcentration of sb(iii) from environmental matrices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747241/ https://www.ncbi.nlm.nih.gov/pubmed/35012044 http://dx.doi.org/10.3390/polym14010021 |
work_keys_str_mv | AT jakavulasilindokuhle magneticionimprintedpolymersmiipsforselectiveextractionandpreconcentrationofsbiiifromenvironmentalmatrices AT biatankositetileraphael magneticionimprintedpolymersmiipsforselectiveextractionandpreconcentrationofsbiiifromenvironmentalmatrices AT dimpekgogobim magneticionimprintedpolymersmiipsforselectiveextractionandpreconcentrationofsbiiifromenvironmentalmatrices AT pakadevusumziemmanuel magneticionimprintedpolymersmiipsforselectiveextractionandpreconcentrationofsbiiifromenvironmentalmatrices AT nomngongophiliswanosizo magneticionimprintedpolymersmiipsforselectiveextractionandpreconcentrationofsbiiifromenvironmentalmatrices |