Cargando…

Bio-Based Rigid Polyurethane Foams Modified with Phosphorus Flame Retardants

Rigid polyurethane foams (RPURF) containing a bio-polyol from rapeseed oil and different phosphorus-based flame retardants were obtained. Triethyl phosphate (TEP), dimethyl propane phosphonate (DMPP) and cyclic phosphonates Addforce CT 901 (20 parts per hundred polyol by weight) were used in the syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Zemła, Marcin, Prociak, Aleksander, Michałowski, Sławomir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747242/
https://www.ncbi.nlm.nih.gov/pubmed/35012126
http://dx.doi.org/10.3390/polym14010102
Descripción
Sumario:Rigid polyurethane foams (RPURF) containing a bio-polyol from rapeseed oil and different phosphorus-based flame retardants were obtained. Triethyl phosphate (TEP), dimethyl propane phosphonate (DMPP) and cyclic phosphonates Addforce CT 901 (20 parts per hundred polyol by weight) were used in the synthesis of RPURF. The influence of used flame retardants on foaming process, cell structure, and physical–mechanical properties as well as flammability of RPURF were examined. The addition of flame retardants influenced the parameters of the cellular structure and decreased compressive strength. All obtained foam materials had a low thermal conductivity coefficient, which allows them to be used as thermal insulation. The research results of bio-based RPURF were compared with foams obtained without bio-polyol. All modified materials had an oxygen index above 21 vol%; therefore, they can be classified as self-extinguishing materials. The analysis of parameters obtained after the cone calorimeter test showed that the modified RPURF have a lower tendency to fire development compared to the reference foams, which was particularly noticeable for the materials with the addition of DMPP.