Cargando…

Influence of Commonly Used Endodontic Irrigants on the Setting Time and Metal Composition of Various Base Endodontic Sealers

The present study aimed to evaluate if commonly used endodontic irrigants such as 3% sodium hypochlorite (NaOCl, Prime Dental, Thane, India), 2% chlorhexidine (CHX, Sigma-Aldrich Co., St. Louis, MO, USA), and 17% ethylenediaminetetraacetic acid (EDTA, Meta-Biomed Co. Ltd., Cheongju-si, South Korea)...

Descripción completa

Detalles Bibliográficos
Autores principales: Jose, Jerry, Teja, Kavalipurapu Venkata, Ranjan, Manish, Mohamed, Roshan Noor, Alam, Mohammad Khursheed, Shrivastava, Deepti, Natoli, Valentino, Nagarajappa, Anil Kumar, Janani, Krishnamachari, Srivastava, Kumar Chandan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747268/
https://www.ncbi.nlm.nih.gov/pubmed/35012047
http://dx.doi.org/10.3390/polym14010027
Descripción
Sumario:The present study aimed to evaluate if commonly used endodontic irrigants such as 3% sodium hypochlorite (NaOCl, Prime Dental, Thane, India), 2% chlorhexidine (CHX, Sigma-Aldrich Co., St. Louis, MO, USA), and 17% ethylenediaminetetraacetic acid (EDTA, Meta-Biomed Co. Ltd., Cheongju-si, South Korea) influenced the setting time and metal composition of different base endodontic sealers on exposure. AH Plus (Dentsply De Trey GmbH, Konstanz, Germany), Sealapex (SybronEndo, Orange, CA, USA), mineral trioxide aggregate (MTA) Fillapex (Angelus Soluções Odontológicas, Londrina, Brazil), and Tubli-Seal (Kerr Dental, Orange, CA, USA) were selected as the different base representatives of endodontic sealers. These sealers were exposed to 3% NaOCl, 2% CHX, and 17% EDTA, and the individual setting time of the sealers was analyzed. The samples were analyzed for heavy metal elements such as chromium (Cr), nickel (Ni), cobalt (Co), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and beryllium (Be) by using inductively coupled plasma mass spectrometry (ICP-MS) analysis. For statistical analysis, one-way ANOVA and post hoc Tukey’s tests were used. All selected sealers showed variation in setting time post-exposure to different irrigants. MTA Fillapex had the shortest mean setting time (215.7 min, post-exposure at 187.3 min) (p < 0.05). Mean setting time was also affected for AH Plus (479.6 min, post-exposure at 423.9 min) (p < 0.05) and Tubli-Seal (514.7 min, post-exposure at 465.2 min) (p < 0.05). Sealapex showed the maximum reduction of setting time (864.8 min, post-exposure at 673.4 min) (p < 0.05). All tested sealers showed heavy metals (Cr, Ni, Co, Cd, As, Hg, and Pb) in their composition, and the quantities were influenced by interaction with different irrigants. The heavy metal Be was not seen in any of the samples. Sealapex showed the longest setting time in comparison to other test sealers. Heavy metals were most present in Sealapex, followed by AH Plus, Tubli-Seal, and MTA Fillapex. MTA Fillapex was seen to have the shortest setting time, and heavy metal composition was least affected on interaction with different commonly used endodontic irrigants. Further, this study provides significant insight into the influence of different endodontic irrigants on interaction with different base endodontic sealers, which has not been reported previously, and future studies should emphasize endodontic irrigant-sealer interactions and their possible effects in the long run.