Cargando…
Biodegradation and Non-Enzymatic Hydrolysis of Poly(Lactic-co-Glycolic Acid) (PLGA12/88 and PLGA6/94)
The predicted growth in plastic demand and the targets for global CO(2) emission reductions require a transition to replace fossil-based feedstock for polymers and a transition to close- loop recyclable, and in some cases to, biodegradable polymers. The global crisis in terms of plastic littering wi...
Autores principales: | Wang, Yue, Murcia Valderrama, Maria A., van Putten, Robert-Jan, Davey, Charlie J. E., Tietema, Albert, Parsons, John R., Wang, Bing, Gruter, Gert-Jan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747309/ https://www.ncbi.nlm.nih.gov/pubmed/35012037 http://dx.doi.org/10.3390/polym14010015 |
Ejemplares similares
-
PLGA Barrier Materials from CO(2). The influence
of Lactide Co-monomer on Glycolic Acid Polyesters
por: Murcia Valderrama, Maria A., et al.
Publicado: (2020) -
Bioavailability of Orally Delivered Alpha-Tocopherol by Poly(Lactic-Co-Glycolic) Acid (PLGA) Nanoparticles and Chitosan Covered PLGA Nanoparticles in F344 Rats
por: Simon, Lacey C., et al.
Publicado: (2016) -
An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering
por: Gentile, Piergiorgio, et al.
Publicado: (2014) -
In Vitro Degradation of Electrospun Poly(Lactic-Co-Glycolic Acid) (PLGA) for Oral Mucosa Regeneration
por: Chor, Ana, et al.
Publicado: (2020) -
Novel Fluorinated Poly (Lactic-Co-Glycolic acid) (PLGA) and Polyethylene Glycol (PEG) Nanoparticles for Monitoring and Imaging in Osteoarthritis
por: Zerrillo, Luana, et al.
Publicado: (2021)