Cargando…
Bearing Fault Diagnosis Using Multidomain Fusion-Based Vibration Imaging and Multitask Learning
Statistical features extraction from bearing fault signals requires a substantial level of knowledge and domain expertise. Furthermore, existing feature extraction techniques are mostly confined to selective feature extraction methods namely, time-domain, frequency-domain, or time-frequency domain s...
Autores principales: | Hasan, Md Junayed, Islam, M. M. Manjurul, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747317/ https://www.ncbi.nlm.nih.gov/pubmed/35009595 http://dx.doi.org/10.3390/s22010056 |
Ejemplares similares
-
An Explainable AI-Based Fault Diagnosis Model for Bearings
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions
por: Hasan, Md Junayed, et al.
Publicado: (2020) -
Gearbox Fault Diagnosis Method Based on Multidomain Information Fusion
por: Xie, Fengyun, et al.
Publicado: (2023) -
Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
por: Pham, Minh Tuan, et al.
Publicado: (2020) -
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
por: Sohaib, Muhammad, et al.
Publicado: (2017)