Cargando…
Physiological and Ultrastructural Alterations Linked to Intrinsic Mastication Inferiority of Segment Membranes in Satsuma Mandarin (Citrus unshiu Marc.) Fruits
Chewing texture is important for fresh citrus fruits, and the mastication trait of a segment directly determines chewing texture. Roughing disorder impairs the quality of Satsuma mandarin fruits, and it is typically correlated with intrinsic mastication inferiority (IMI). This study explored the rol...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747345/ https://www.ncbi.nlm.nih.gov/pubmed/35009047 http://dx.doi.org/10.3390/plants11010039 |
_version_ | 1784630812991291392 |
---|---|
author | Lian, Xuefei Li, Feifei Chang, Yuanyuan Zhou, Tie Chen, Yuewen Yin, Tao Li, Yunsong Ye, Li Jin, Yan Lu, Xiaopeng |
author_facet | Lian, Xuefei Li, Feifei Chang, Yuanyuan Zhou, Tie Chen, Yuewen Yin, Tao Li, Yunsong Ye, Li Jin, Yan Lu, Xiaopeng |
author_sort | Lian, Xuefei |
collection | PubMed |
description | Chewing texture is important for fresh citrus fruits, and the mastication trait of a segment directly determines chewing texture. Roughing disorder impairs the quality of Satsuma mandarin fruits, and it is typically correlated with intrinsic mastication inferiority (IMI). This study explored the role of segment membranes (SMs) in IMI. Similar to IMI in roughing-disordered fruits, segment shear force significantly enhanced relative to controls (CK); cell layers and cell wall thickness increased also in inferior masticating SMs. The ‘Miyamoto Wase’ cultivar exhibited larger segment shear force and more SM cell layers than ‘Juxiangzao’. In SMs, vessel cells could be divided into outside layers where segments adjoin and inside layers where juice sacs grow from. The inside vessel cell layers in the inferior masticating SMs were denser. Vessels with a length of 200 to 300 μm and a diameter of 5 to 15 μm predominated in SMs. The average vessel diameter enlarged by 13% to 16.5% in inferior masticating SMs, depending on cultivars. Furthermore, there was a decrease in vessels with a diameter <5 μm and an increase in vessels >10 μm in the inferior masticating SMs. Between phenotypes, protopectin increased significantly throughout development of inferior masticating SMs, while water-soluble pectin increased during the later stages of development. In one inferior masticating SM sample, protopectin and water-soluble pectin levels were higher in the inner-ring area than those in the outer-ring area. Correspondingly, expression of CuPME21 which is involved in pectin hydrolysis was consistently upregulated in the inferior masticating SMs throughout fruit development. The findings in this work provide novel insights into citrus SM structure and its IMI. |
format | Online Article Text |
id | pubmed-8747345 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87473452022-01-11 Physiological and Ultrastructural Alterations Linked to Intrinsic Mastication Inferiority of Segment Membranes in Satsuma Mandarin (Citrus unshiu Marc.) Fruits Lian, Xuefei Li, Feifei Chang, Yuanyuan Zhou, Tie Chen, Yuewen Yin, Tao Li, Yunsong Ye, Li Jin, Yan Lu, Xiaopeng Plants (Basel) Article Chewing texture is important for fresh citrus fruits, and the mastication trait of a segment directly determines chewing texture. Roughing disorder impairs the quality of Satsuma mandarin fruits, and it is typically correlated with intrinsic mastication inferiority (IMI). This study explored the role of segment membranes (SMs) in IMI. Similar to IMI in roughing-disordered fruits, segment shear force significantly enhanced relative to controls (CK); cell layers and cell wall thickness increased also in inferior masticating SMs. The ‘Miyamoto Wase’ cultivar exhibited larger segment shear force and more SM cell layers than ‘Juxiangzao’. In SMs, vessel cells could be divided into outside layers where segments adjoin and inside layers where juice sacs grow from. The inside vessel cell layers in the inferior masticating SMs were denser. Vessels with a length of 200 to 300 μm and a diameter of 5 to 15 μm predominated in SMs. The average vessel diameter enlarged by 13% to 16.5% in inferior masticating SMs, depending on cultivars. Furthermore, there was a decrease in vessels with a diameter <5 μm and an increase in vessels >10 μm in the inferior masticating SMs. Between phenotypes, protopectin increased significantly throughout development of inferior masticating SMs, while water-soluble pectin increased during the later stages of development. In one inferior masticating SM sample, protopectin and water-soluble pectin levels were higher in the inner-ring area than those in the outer-ring area. Correspondingly, expression of CuPME21 which is involved in pectin hydrolysis was consistently upregulated in the inferior masticating SMs throughout fruit development. The findings in this work provide novel insights into citrus SM structure and its IMI. MDPI 2021-12-23 /pmc/articles/PMC8747345/ /pubmed/35009047 http://dx.doi.org/10.3390/plants11010039 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lian, Xuefei Li, Feifei Chang, Yuanyuan Zhou, Tie Chen, Yuewen Yin, Tao Li, Yunsong Ye, Li Jin, Yan Lu, Xiaopeng Physiological and Ultrastructural Alterations Linked to Intrinsic Mastication Inferiority of Segment Membranes in Satsuma Mandarin (Citrus unshiu Marc.) Fruits |
title | Physiological and Ultrastructural Alterations Linked to Intrinsic Mastication Inferiority of Segment Membranes in Satsuma Mandarin (Citrus unshiu Marc.) Fruits |
title_full | Physiological and Ultrastructural Alterations Linked to Intrinsic Mastication Inferiority of Segment Membranes in Satsuma Mandarin (Citrus unshiu Marc.) Fruits |
title_fullStr | Physiological and Ultrastructural Alterations Linked to Intrinsic Mastication Inferiority of Segment Membranes in Satsuma Mandarin (Citrus unshiu Marc.) Fruits |
title_full_unstemmed | Physiological and Ultrastructural Alterations Linked to Intrinsic Mastication Inferiority of Segment Membranes in Satsuma Mandarin (Citrus unshiu Marc.) Fruits |
title_short | Physiological and Ultrastructural Alterations Linked to Intrinsic Mastication Inferiority of Segment Membranes in Satsuma Mandarin (Citrus unshiu Marc.) Fruits |
title_sort | physiological and ultrastructural alterations linked to intrinsic mastication inferiority of segment membranes in satsuma mandarin (citrus unshiu marc.) fruits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747345/ https://www.ncbi.nlm.nih.gov/pubmed/35009047 http://dx.doi.org/10.3390/plants11010039 |
work_keys_str_mv | AT lianxuefei physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT lifeifei physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT changyuanyuan physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT zhoutie physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT chenyuewen physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT yintao physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT liyunsong physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT yeli physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT jinyan physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits AT luxiaopeng physiologicalandultrastructuralalterationslinkedtointrinsicmasticationinferiorityofsegmentmembranesinsatsumamandarincitrusunshiumarcfruits |