Cargando…
Label GM-PHD Filter Based on Threshold Separation Clustering
Gaussian mixture probability hypothesis density (GM-PHD) filtering based on random finite set (RFS) is an effective method to deal with multi-target tracking (MTT). However, the traditional GM-PHD filter cannot form a continuous track in the tracking process, and it is easy to produce a large number...
Autores principales: | Wang, Kuiwu, Zhang, Qin, Hu, Xiaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747369/ https://www.ncbi.nlm.nih.gov/pubmed/35009616 http://dx.doi.org/10.3390/s22010070 |
Ejemplares similares
-
A Labeled GM-PHD Filter for Explicitly Tracking Multiple Targets †
por: Gao, Yiyue, et al.
Publicado: (2021) -
Extended Emitter Target Tracking Using GM-PHD Filter
por: Zhu, Youqing, et al.
Publicado: (2014) -
Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory
por: Zhang, Lichuan, et al.
Publicado: (2017) -
Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering
por: Zhang, Qian, et al.
Publicado: (2016) -
Multi-Feature Matching GM-PHD Filter for Radar Multi-Target Tracking
por: Tao, Jin, et al.
Publicado: (2022)