Cargando…
Comparison of Machine Learning and Sentiment Analysis in Detection of Suspicious Online Reviewers on Different Type of Data
The article focuses on solving an important problem of detecting suspicious reviewers in online discussions on social networks. We have concentrated on a special type of suspicious authors, on trolls. We have used methods of machine learning for generation of detection models to discriminate a troll...
Autores principales: | Machova, Kristina, Mach, Marian, Vasilko, Matej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747373/ https://www.ncbi.nlm.nih.gov/pubmed/35009698 http://dx.doi.org/10.3390/s22010155 |
Ejemplares similares
-
Machine Learning and Lexicon Approach to Texts Processing in the Detection of Degrees of Toxicity in Online Discussions
por: Machová, Kristína, et al.
Publicado: (2022) -
Deep Learning in the Detection of Disinformation about COVID-19 in Online Space
por: Machová, Kristína, et al.
Publicado: (2022) -
Detection of Suspicious Cardiotocographic Recordings by Means of a Machine Learning Classifier
por: Ricciardi, Carlo, et al.
Publicado: (2023) -
Detection of emotion by text analysis using machine learning
por: Machová, Kristína, et al.
Publicado: (2023) -
Using statistical and machine learning to help institutions detect suspicious access to electronic health records
por: Boxwala, Aziz A, et al.
Publicado: (2011)