Cargando…
Recognition of Maize Phenology in Sentinel Images with Machine Learning
The scarcity of water for agricultural use is a serious problem that has increased due to intense droughts, poor management, and deficiencies in the distribution and application of the resource. The monitoring of crops through satellite image processing and the application of machine learning algori...
Autores principales: | Murguia-Cozar, Alvaro, Macedo-Cruz, Antonia, Fernandez-Reynoso, Demetrio Salvador, Salgado Transito, Jorge Arturo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747376/ https://www.ncbi.nlm.nih.gov/pubmed/35009637 http://dx.doi.org/10.3390/s22010094 |
Ejemplares similares
-
Monitoring and Identification of Agricultural Crops through Multitemporal Analysis of Optical Images and Machine Learning Algorithms
por: Espinosa-Herrera, José M., et al.
Publicado: (2022) -
Genetic dissection of maize phenology using an intraspecific introgression library
por: Salvi, Silvio, et al.
Publicado: (2011) -
Impact of water deficit stress in maize: Phenology and yield components
por: Sah, R. P., et al.
Publicado: (2020) -
An integrated approach of field, weather, and satellite data for monitoring maize phenology
por: Nieto, Luciana, et al.
Publicado: (2021) -
Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and -2 time series
por: d’Andrimont, Raphaël, et al.
Publicado: (2020)