Cargando…
Jamming Strategy Optimization through Dual Q-Learning Model against Adaptive Radar
Modern adaptive radars can switch work modes to perform various missions and simultaneously use pulse parameter agility in each mode to improve survivability, which leads to a multiplicative increase in the decision-making complexity and declining performance of the existing jamming methods. In this...
Autores principales: | Liu, Hongdi, Zhang, Hongtao, He, Yuan, Sun, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747401/ https://www.ncbi.nlm.nih.gov/pubmed/35009688 http://dx.doi.org/10.3390/s22010145 |
Ejemplares similares
-
A Barrage Jamming Strategy Based on CRB Maximization against Distributed MIMO Radar
por: Zheng, Guangyong, et al.
Publicado: (2019) -
Airborne Radar Anti-Jamming Waveform Design Based on Deep Reinforcement Learning
por: Zheng, Zexin, et al.
Publicado: (2022) -
ECCM Schemes against Deception Jamming Using OFDM Radar with Low Global PAPR
por: Wang, Xinhai, et al.
Publicado: (2020) -
Advancing Stepped-Waveform Radar Jamming Techniques for Robust False-Target Generation against LFM-CFAR Systems
por: Wang, Yanqi, et al.
Publicado: (2023) -
Improving TDOA Radar Performance in Jammed Areas through Neural Network-Based Signal Processing
por: Gotthans, Jakub, et al.
Publicado: (2023)