Cargando…
Livestock Informatics Toolkit: A Case Study in Visually Characterizing Complex Behavioral Patterns across Multiple Sensor Platforms, Using Novel Unsupervised Machine Learning and Information Theoretic Approaches
Large and densely sampled sensor datasets can contain a range of complex stochastic structures that are difficult to accommodate in conventional linear models. This can confound attempts to build a more complete picture of an animal’s behavior by aggregating information across multiple asynchronous...
Autores principales: | McVey, Catherine, Hsieh, Fushing, Manriquez, Diego, Pinedo, Pablo, Horback, Kristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747447/ https://www.ncbi.nlm.nih.gov/pubmed/35009546 http://dx.doi.org/10.3390/s22010001 |
Ejemplares similares
-
Mind the Queue: A Case Study in Visualizing Heterogeneous Behavioral Patterns in Livestock Sensor Data Using Unsupervised Machine Learning Techniques
por: McVey, Catherine, et al.
Publicado: (2020) -
Improving the Reliability of Scale-Free Image Morphometrics in Applications with Minimally Restrained Livestock Using Projective Geometry and Unsupervised Machine Learning
por: McVey, Catherine, et al.
Publicado: (2022) -
Latin American Theoretical Informatics
Publicado: (2004) -
Categorical Nature of Major Factor Selection via Information Theoretic Measurements
por: Chen, Ting-Li, et al.
Publicado: (2021) -
Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya
por: Tchouassi, David P., et al.
Publicado: (2016)